| 研究生: |
葉美慧 Ignawati, Sifera |
|---|---|
| 論文名稱: |
硫化鎘/硫化鋅及硫化鋅/硫化鎘核殼奈米粒子之製備及其光學與結構之特性探討 Optical and Structure Characterization and Synthesis of CdS/ZnS and ZnS/CdS core shell nanoparticles |
| 指導教授: |
陳進成
Chen, Chin-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 93 |
| 外文關鍵詞: | nanoparticle, core-shell, CdS/ZnS, ZnS/CdS |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CdS and ZnS core nanoparticles were synthesized by microwave method and then coated with shell material by traditional method, using simple and safe reagents such as cadmium acetate, zinc acetate, and thiourea to synthesis the core shell nanopartices. After coating CdS core by ZnS shell the photoluminescence intensity greatly increase from 18 a.u to a maximum photoluminescence intensity of 225 a.u. For ZnS/CdS core shell nanoparticles, after CdS coated on ZnS core, the photoluminescence intensity increases significantly too, the bare ZnS cores have a photoluminescence intensity of 353 a.u and the ZnS/CdS core shell nanoparticles can reach a maximum photoluminescence intensity of 1460 a.u. Shell formation was confirmed by observation of a red shifting in the photoluminescence spectra. As the precursor feeding rate decreases, it leads the formation of bigger core shell nanoparticles, and so does the increases of precursor concentration. The advantage of the process is that it can be carried out in the open air using simple equipment and is simpler, cheaper, and safer as compared with another method.
[1] G.Y. Tseng, J.C. Ellenbogen, Science 294, (2001) 1293
[2] G.Z. Cao, Nanosrtuctures and Nanomaterials Synthesis, Properties and Applications, Imperial College Press (2004)
[3] J.H. Schon, H. Meng, Z. Bao, Science 294, (2001) 2138
[4] Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)
[5] J.H. Schon, H. Meng, Z. Bao, Nature 413, (2001) 713
[6] K.Guido, Hybrid Materials. Synthesis, Characterization, and Applications, 2007
[7] J.R. Ireland, J. McMath, J. Ramsley, Insights in Nanomedicine : Fight Cancer with Gold Nanoshells, NanoEd Resource Portal, 2004
[8] Y.C. Tian, T. Newton, N.A. Kotov, D.M. Guldi, J.H. Fendler, J. Phys. Chem. 21, 100 (1996) 8927–8939
[9] Y. Wang, Z.Y. Tang, M.A. Correa-Duarte, I.P. Santos, M. Giersig, N.A. Kotov, L.M. Liz-Marzan, J. Phys. Chem. B, 108 (2004) 15461-15469
[10] A.R. Loukanov, C.D. Dushkin, K.I. Papazova, A.V. Kirov, M.V. Abrashev, E. Adachi, Colloide Surf. A, 245(2004) 9-14
[11] M. Protiere, P. Reiss, Nanoscale Res. Lett., 1(2006) 62-67
[12] M. Ethayaraja, C. Ravikumar, D. Muthukumar, K. Dutta, R. Bandyopadhayaya, J. Phys. Chem. C, 111 (2007) 3246-3252
[13] R.S. Mane, C.D. lokhande, Mater. Chem. Phys., 65 (2000) 1
[14] G. Henshaw, I.P Oarkin, G. Shaw, Chem. Commun., (1996) 1095
[15] R. He, X.F. Qian, J. Yin, H.A. Xi, L.J. Bian, Z.K. Zhu, Colloide Surf. A, 220 (2003) 151-157
[16] Datta, S.K. Panda, S. Chaudhuri, J. Phys. Chem. C, 111 (2007) 17260-17264
[17] J.W. Kemling, Advances in Lasing from Colloidal Quantum Dots, 2007
[18] X.H. Zhong, R.G. Xie, Y. Zhang, T. Basche, W. Knoll, Chem. Mater., 17 (2005) 4038-4042
[19] D. Yang, Q. Chen, S. Xu, J. of Luminescence, 126 (2007) 853-85
[20] W. Shockley, Electron and Holes in Semiconductors, Litton Educational Publishing Co., Inc., 1950
[21] W. Middleton, M.E. Van Valkenburg, Reference Data for Engineers, 9th ed, 2002
[22] R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed., New York 1999
[23] Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th ed., 1998
[24] K.M. Yeh, The Synthesis and Optoelectronic Properties of Electroluminescent and Phosphorescent Host Polymers, Doctoral Dissertation, National Cheng Kung University, 2007
[25] B.G. Streetman, Solid State Electronic Devices, 2nd ed., Prentice Hall (1980)
[26] S.M. Sze, Physics of Semiconductor Device, Wiley Interscience Publication, New York, 1981
[27] B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B, 101 (1997) 9463-9475
[28] L.A. Peyser, A.E. Vinson, A.P. Bartko, R.M. Dickson, Science Mag. 291, 5501 (2001) 103-106
[29] B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115 (1993) 8706
[30] T. Vossmeyer, L. Katsikas, M. Giersig, I.G. Popovic, K. Diesner, A. Chemseddine, A. Eyechmuller, H. Weller, J. Phys. Chem., 98 (1994) 7665
[31] Z.A. Peng, X. Peng, J. Am. Chem. Soc., 123 (2001) 183
[32] A.L. Smith, Particle Growth in Suspension, AcademicPress : London, 1983, 3-15
[33] C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115 (1993) 8706-8715
[34] A.A. Bol, A. Meijerink, J. Phys. Chem. B, 105 (2001) 10197
[35] Y. Wang, Z. Tang, M.A. Correa-Duarte, L.M. Liz-Marzan, N.A. Kotov, J. Am. Chem. Soc., 125 (2003) 283
[36] A.A. Bol, A. Meijerink, J. Phys. Chem. B, 105 (2001) 10203
[37] L.A. Peyser, A.E. Vinson, A.P. Bartko, R.M. Dickson, Science Mag. 291, 5501 (2001) 103-106
[38] M.A. Malik, P. O’Brien, N. Revaprasadu, Chem. Mater., 14 (2002) 2004-2010
[39] R. Xie, U. Kolb, J.X. Li, T. Basche, A. Mews, J. Am. Chem. Soc., 127 (2005) 7480-7488
[40] S.A. Ivanov, A. Piryatinski, J. Nanda, S, Tretiak, K.R. Zavaldi, W.O. Wallace, D. Werder, V.I. Klimov, J. Am. Chem. Soc., 129 (2007) 11708-11719
[41] Nemchinov, M. Kirsanova, N.N. Hewa-Kasakarage, M. Zamkov, J. Phys. Chem. C, 112 (2008) 9301-9307
[42] R. Hua, J.H. Niu, M.T. Li, T.Z. Yu, W.L. Li, Chem. Phys. Lett., 419 (2006) 269-272
[43] K. Rajeshwar, N.R. TAcconi, C.R. Chenthamarakshan, Chem. Mater., 13 (2001) 27
[44] S. Kalele, S.W. Gosavi, J. Urban, S.K. Kulkarni, Curr. Sci., 91 (2006) 103
[45] R.G. Xie, U. Kolb, J.X. Li, T. Basche, A. Mews, J. Am. Chem. Soc., 127 (2005) 7480
[46] J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders,Jr., S.B. Warner, The Science and Design of Engineering Materials, 2nd ed, McGraw-Hill, 1999