簡易檢索 / 詳目顯示

研究生: 薛穎謙
huseh, ying- chien
論文名稱: 具週期邊界條件之通道內流場及其熱傳研究
Study of Flow and Heat Transfer in a Channel with Periodic Boundary Condition
指導教授: 吳鴻文
Wu, Hong-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 熱對流增益週期邊界條件安裝矩形柱狀物加熱塊流道
外文關鍵詞: heat transfer enhancement, block-heated channel, mounting rectangular cylinders, periodic boundary conditions
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係使用半投射有限元素法( FEM )與前置處理之共軛梯度法,研究週期邊界條件下加熱塊之流道中的流場與熱對流增益。本文使用時間平均紐賽數,摩擦性能及熱性能係數來探討週期性邊界條件與不同雷諾數(100,175,250)下,在流道中如何安裝矩形柱狀物以產生增益效果。結果指出,安裝矩形柱狀物在上游加熱塊上方可以有效地強化加熱塊的傳熱;然而,增加矩形柱狀物數目會增加摩擦性能。結果發現,週期邊界條件下每兩個加熱塊安裝一矩形柱狀物具有最好的熱性能。

    This paper investigates flow field and convective heat transfer enhancement in a block-heated channel with periodic boundary conditions using the element by element in semi-projection finite element method (FEM) coupled with preconditioned conjugate gradient method. This paper used time-mean Nusselt number ratio, friction performance, and thermal performance to study how installing rectangular cylinders in the channel works with periodic boundary conditions at different Reynolds numbers (100, 300, and 500). The results indicate that the rectangular cylinders mounted in cross-flow above an upstream block can effectively enhance heat transfer in the block-heated channel. However, increasing the number of rectangular cylinder can increase the friction performance. As a result, the case for periodic boundary conditions with a rectangular cylinder above the first block every two blocks has the best thermal performance.

    摘要 I 誌謝 III 目錄 IV 圖目錄 V 符號說明 VIII 第 一 章 前 言 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 第 二 章 EBE-PCG原理 5 2-1 Element-By-Element 5 2-2 Preconditioned 共軛梯度法 6 第 三 章 數學模式和數值演算法 9 3-1 介紹 9 3-2 數學方程式 9 3-3 基本統御方程式之無因次化 13 3- 4 利用FEM方法求解 17 3-5 投射方法 ( Projection method ) 21 第 四 章 結果與討論 24 4-1 網格測試 25 4-2 本文之數值解與參考文獻之比較 26 4-3 流場及熱傳效應 27 4-4 不同雷諾數下,矩形柱狀物安置方式的影響 27 第五章 結論 31 參考文獻 77

    [1] Thomas J.R. Hughes, M. ASCE Itzhak Levit, and James Winget, ”Element-By-Element Implicit Algorithms for Heat Conduction,” Journal of Engineering Mechanics, vol. 109, no.2, p 576-585, Apr 1983.

    [2] Thomas J.R. Hughes, Itzhak Levit and James Winget, “An Element-By-Element Solution Algorithm For Problems of Structural and Solid Mechanics,” Computer Methods in Applied Mechanics and Engineering , vol.36, no. 2, p 241-254 , Feb 1983.

    [3] Miguel Ortiz, Peter M. Pinsky and Robert L. Taylor, “Unconditionally Stable Element-By-Element Algorithms for Dynamic Problem,” Computer Methods in Applied Mechanics and Engineering , vol. 36, no. 2, p 223-239, Feb 1983.

    [4] Thomas J.R. Hughes, James Winget, Itzhak Levit and T.E. Tezduyar, “New Alternate Directions Procedure in Finite Element Analysis Based Upon EBE Approximate Factorization,” Proceedings of the Symposium on Recent Developments in Computer Methods for Nonlinear Solid and Structural Mechanics, Proceedings of the ASME Joint Meeting of Fluid Engineering, Applied Mechanics and Bioengineering, University of Houston, Texas, June 1983.

    [5] Thomas J.R. Hughes, A. Raefsky, A. Muller, J. Winget and I. Levit, “A Progress Report on EBE Solution Proceedings in Solid Mechanics,” Proceedings of the Second International Conference on Nonlinear Problems, Barcelona, Spain, April 1984.

    [6] Winget, J.M., “Element by Element Solution Procedures for Nonlinear transient heat condition analysis,” Ph.D. Thesis, California Institute of Technology, 1983.

    [7] Itzhak Levit, “Element-By-Element Solvers of Order N,” Computers and Structures , vol. 27, no. 3, p 357-360, 1987.

    [8] Graham F.Carey and Bo-nan Jiang, “Element-By-Element Linear and Nonlinear Solution Schemes,” Communications in Applied Numerical Methods, vol. 2, p 145-153, 1986.

    [9] Wathen, A.j., ”An Analysis of Some Element-By-Element Techniques,” Computer Methods in Applied Mechanics and Engineering, vol. 74 , p 271-287, 1989.

    [10] Jocelyne Erhel, Alice Traynard and Marina Vidrascu, “An Element-By-Element Preconditioned Conjugate Gradient Method Implemented on Vector Computer,” Parallel Computing, vol.17, p 1051-1065, 1991.

    [11] Manolis Papadrakakis and Michael C. Dracopoulos, “A Global Preconditioner for the Element-By-Element Solution Methods, ” Computer Methods in Applied Mechanics and Engineering, vol.88, p 275-286, 1991.

    [12] Akira Mizukami, “Element-by-Element Penalty / Uzawa Formulation for Large Scale Flow Problems,” Computer Methods In Applied Mechanics and Engineering, vol.112, p 283-289, 1994.

    [13] Zhiping Li, M.B.Reed , ”Convergence Analysis for An Element-by-Element Finite Element Method,” Computer Methods in Applied Mechanics and Engineering, vol.123, p 33-42, 1995.

    [14] Adefemi Sunmonu, “Implementation of A Novel Element-BY-Element Finite Element Method on the Hypercube,” Computer Methods in Applied Mechanics and Engineering, vol. 123, p 43-51, 1995.

    [15] Reddy, M.P. and Reddy, J.N., “Multigrid Methods to Accelerate Convergence of Element-By-Element Solution Algorithms for Viscous Incompressible Flows,” Computer Methods in Applied Mechanics and Engineering, vol. 132, p 179-193, 1996.

    [16] Nakabayashi, Y., Okuda, H. and Yagawa, G., “Parallel Finite Element Fluid Analysis on An Element-By-Element Basis,” Computational Mechanics, vol. 18, p 377-382, 1996.

    [17] Chorin, A.J, “Numerical Solution of Navier-Stokes Equations,” Math. Comp., vol. 22, p 745-762, 1968.

    [18] Ramaswamy, B., Jue, T.C. and Akin, J.E., ”Semi-implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems,” Int. J. Numer. Methods Eng, vol. 34, p 675-696, 1992.

    [19] 莊和達,運用EBE-PCG及投射有限元素法計算不可壓縮流體之熱傳現象,國立成功大學造船及船舶機械工程研究所碩士論文,2000。
    [20] Svetislav Savovi_c, James Caldwell “Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions, ”2003.

    [21] Murata H, Sawada K and Suzuki K, “Applicability of Spatially Periodic Boundary Conditions to a Numerical Computation of Flow in a Channel Obstructed by an Array of Square Rods,”2004.
    [22] Rowley, G. J.; Patankar, S. V. Analysis of laminar flow and heat transfer in tubes with internal circumferential fins.
    [23] Hasan Gunes, “Analytical solution of buoyancy-driven flow and heat transfer in a vertical channel with spatially periodic boundary conditions,”2003.

    [24] L. Gong , Z.Y. Li , Y. L. He and W. Q. Tao, “ An International Journal of Computation and Methodology,”2007

    [25] T.M. Liou, S.W. Chang, J.H. Hung and S.F. Chiou, “ High rotation number heat transfer of a 45_ rib-roughened rectangular duct with two channel orientations,”2006

    [26] T.M. Liou, S.H. Chen, K.C. Shih, “Numerical simulation of turbulent flow field and heat transfer in a two-dimensional channel with periodic slit ribs,”2002
    [27] Hughes, T.J.R., Levit, I., and Winget, J.M., “Implicit, Unconditionally Stable Algorithms for Heat Conduction Analysis,” J. Eng. Mechanics Division ASCE 109, p 576-585, 1983.
    [28] Hughes, T.J.R., and Winget, J.M., ”Solution Algorithms for Nonlinear Transient Heat Conduction Analysis Employing Element by Element Iteratives Strategies,” Comput. Meth. Appl. Mechanics Eng, vol.52, p 711-815, 1985.
    [29] Chorin, A.J, “Numerical Solution of Navier-Stokes Equations,” Math. Comp., vol. 22, p 745-762, 1968.
    [30] Bailey, R.T., Shih, T.I-P., Nguyen, H.L. and Roelke, R.J.,”Gird 2D/3D-A Computer Program for Generating Gird Systems in Complex-Shaped Two- and Three-Dimensional Spatial Domains. Part 1: Theory and Method,” NASA Technical Memorandum 102453, March 1990.
    [31] Bailey, R.T., Shih, T.I-P., Nguyen, H.L. and Roelke, R.J.,”Gird 2D/3D-A Computer Program for Generating Gird Systems in Complex-Shaped Two- and Three-Dimensional Spatial Domains. Part 2: User’s Manual and Program Listing,” NASA Technical Memorandum 102454, April 1990.
    [32] 劉進順,內設肋粗化型扭旋片及扭釘型扭旋片圓管熱傳與壓損實驗研究,國立高雄海洋科技大學航運暨管理學院工程研究所碩士論文。

    下載圖示 校內:2012-09-03公開
    校外:2012-09-03公開
    QR CODE