簡易檢索 / 詳目顯示

研究生: 王怡懿
Wang, Yi-Yi
論文名稱: 滲透條件對多孔黏彈體裂縫之能量釋放率的影響
Effects of Permeability Conditions on the Energy Release Rate of Poroviscoelastic Cracks
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 多孔黏彈性體凝聚力元素瞬時能量釋放率水凝膠J積分
外文關鍵詞: Poroviscoelastic, cohesive zone, instantaneous energy release rate, hydrogel, J-integral
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔黏彈性材料的主要組成為多孔洞的固體網絡與充滿於孔洞之間的孔隙流體,能同時表現出固體黏彈性和液體流動性行為。廣泛的應用使了解其內部結構和力學性質,尤其破壞性質於設計上極為重要。
    本文將分析多孔黏彈性體中長度為2a的裂縫,因裂縫面及遠端邊界滲透條件不同驅使液體流出固體網絡,使得多孔黏彈性體的固體網絡發生變形。搭配遠端邊界不同的束制條件,探討三種型態的破壞問題。
    使用ABAQUS模擬多孔黏彈性體中的裂縫,在裂縫尖端附近放置凝聚力元素(cohesive element),採用J積分原理計算瞬時能量釋放率。時間極短時,瞬時能量釋放率數值結果符合其理論預測值,其值受多孔黏彈體的固體網絡材料性質與液體流動範圍以及遠端邊界束制條件影響。當遠端邊界應力為零,瞬時能量釋放率最大值發生於排水完成前,排水完成時其瞬時能量釋放率趨近於零。當遠端邊界應變為零,邊界上會產生一拉應力,由此拉應力計算應力強度因子及瞬時能量釋放率之最終值。若液體排水時間與固體黏彈性網絡鬆弛時間有明顯差異,則瞬時能量釋放率會分兩階段達到最終值。
    由本研究數值結果得知裂縫尖端應力與變形行為隨液體流動與固體鬆弛作用相互影響,因此瞬時能量釋放率與遠端邊界及裂縫面滲透條件息息相關。經由數值模擬不同邊界滲透與束制條件及固體黏彈性材料性質變化下的裂縫尖端瞬時能量釋放率,可供判斷多種情境下多孔黏彈體裂縫增長的趨勢。

    In this study, a center crack of finite length 2a in a saturated poroviscoelastic plane of dimensions 2W is analyzed. Permeability conditions on the crack faces or the remote boundaries will drive the liquid out of the solid network, which will deform the solid network of poroviscoelastic medium. Three mixed types of permeability conditions on the crack faces and the remote boundaries are considered. A finite element software ABAQUS is used to simulate the crack in a poroviscoelastic medium. The instantaneous energy release rate is calculated by J-integral, which uses the cohesive zone embedded ahead of the crack tip. At small flow times, the numerical results of the instantaneous energy release rate correspond to the theoretical prediction. The value of J is affected by the material properties of the solid network, the value of W/a and the constraint on the remote boundaries. From the numerical results of this study, it is known that the stress near the crack tip and the deformation of solid network is influenced by both liquid flow and viscoelastic relaxation of solid.

    摘要 I ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XII 符號表 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文架構與內容 2 第二章 文獻回顧 3 2.1 多孔黏彈性材料 3 2.2 多孔黏彈性體中的破壞 5 第三章 研究方法之相關理論 8 3.1多孔黏彈性體材料 8 3.2 多孔黏彈性體內裂縫問題 11 3.3 裂縫尖端附近應力場與孔隙液壓場 11 3.4 有限元素模型與能量釋放率計算 14 第四章 數值模擬結果 22 4.1 短時間內裂縫尖端附近應力場與孔隙水壓場 22 4.2 瞬時能量釋放率 23 第五章 結論 66 參考文獻 68

    Atkinson, C. and Craster, R. V., Plane Strain Fracture in Poroelastic Media, Proceedings: Mathematical and Physical Sciences, Vol. 434, No. 1892, Pages 605-633, 1991
    Atkinson, C. and Craster, R. V., A singular perturbation approach to integral equations occurring in poroelasticity, IMA Journal of Applied Mathematics, Vol.52, Pages 221-252, 1994
    Anderson, T.L., Fracture Mechanics: Fundamentals and Applications, Third Edition, CRC Press, Boca Raton, FL, Pages 25-133, 2005
    Ahmed, E. M., Hydrogel: Preparation, characterization, and applications: A review, Journal of Advanced Research, Vol. 6, Pages 105–121, 2015
    Biot, M. A., Thermoelasticity and irreversible thermodynamics., Journal of Applied Physics, Vol. 27, No. 3, Pages 240-253, 1956
    Biot, M. A., Theory of Deformation of a Porous Viscoelastic Anisotropic Solid, Journal of Applied Physics, Vol. 27, No. 5, Pages 459-467, 1956
    Biot, M. A., Mechanics of Deformation and Acoustic Propagation in Porous Media, Vol. 33, No. 4, Pages 1482-1498, 1962
    Bouklas, N., Landis, C. M. and Huang R., Effect of Solvent Diffusion on Crack-Tip Fields and Driving Force for Fracture of Hydrogels, Journal of Applied Mechanics, Vol. 82, No.8, 2015
    Craster, R. V. and Atkinson, C., Crack Problems in A Poroelastic Medium – An Asymptotic Approach, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., Vol. 346, Pages 387-428, 1994
    Craster, R. V. and Atkinson, C., On Finite-length Cracks and Inclusions in Poroelasticity, Q. J. Mech. Appl. Math., Vol. 49, Pages 311-335,1996
    Craster, R. V. and Atkinson, C., Mechanics of Poroelastic Media, Kluwer Academic Publishers, Vol. 23,1996
    Chen, T., Determining a Prony Series for a Viscoelastic Material from Time Varying Strain Data, NASA Technical Reports Server, Pages 1-26, 2000
    Calo, E. and Khutoryanskiy, V.V., Biomedical applications of hydrogels: A review of patents and commercial products, European Polymer Journal, Vol. 65, Pages 252–267, 2015
    Hong, W., Zhao, X., Zhou, J. and Suo, Z., A theory of coupled diffusion and large deformation in polymeric gels, Journal of the Mechanics and Physics of Solids, Vol. 56, Pages 1779–1793, 2008
    Haftbaradaran, H. and Qu, J., A path-independent integral for fracture of solids under combined electrochemical and mechanical loadings, Journal of the Mechanics and Physics of Solids, Vol. 71, Pages 1–14, 2014
    Li, Q., Liu, C., Wen, J., Wu, Y., Shan, Y. and Liao, J., The design, mechanism and biomedical application of self-healing hydrogels, Chinese Chemical Letters, Vol. 28, Pages 1857–1874, 2017
    Majee, S.B., Emerging Concepts in Analysis and Applications of Hydrogels, BoD – Books on Demand, Pages 9-38, 2016
    Noselli, G., Lucantonio, A., McMeeking, R.M. and DeSimone, A., Poroelastic toughening in polymer gels: A theoretical and numerical study, Journal of the Mechanics and Physics of Solids, Vol. 94, Pages 33-46, 2016
    Pizzocolo, F., Huyghe, J.M. and Ito,K., Mode I crack propagation in hydrogels is step wise, Engineering Fracture Mechanics, Vol. 97, Pages 72–79, 2013
    Paleos, G.A., What are Hydrogels, Pittsburgh Plastics Manufacturing, Butler, PA, 2012
    Rensfelt, A., Viscoelastic Materials: Identification and Experiment Design, Uppsala University Library, Sweden, Pages 19-31, 2010
    Schapery, R. A., A theory of crack initiation and growth in viscoelastic media. I. Theoretical development, International Journal of Fracture, Vol. 11, No. 1, Pages 141-159, 1975
    Schapery, R. A., A theory of crack initiation and growth in viscoelastic media. II. Approximate methods of analysis, International Journal of Fracture, Vol. 11, No. 3, Pages 369-388, 1975
    Schapery, R. A., A theory of crack initiation and growth in viscoelastic media. Ⅲ. Analysis of continuous growth, International Journal of Fracture, Vol. 11. No. 4, Pages 549-562, 1975
    Skrzeszewska, P. J., Sprakel, J., Frits A. de Wolf, Fokkink, R., Cohen Stuart, M. A. and Jasper van der Gucht, Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network, Macromolecules, 43, 7, Pages 3542-3548, 2010
    Salve1, A. K. and Jalwadi, S. N., Implementation of Cohesive Zone in ABAQUS to Investigate Fracture Problems, National Conference for Engineering Post Graduates RIT, Vol. 15, Pages 60-66, 2015
    Yang, C.H. and Lin, Y.Y., Time-dependent fracture of mode-I cracks in poroviscoelastic media, European Journal of Mechanics / A Solids, Vol. 69, Pages 78-87, 2018
    Zohuriaan-Mehr, M. J. and Kabiri, K., Superabsorbent Polymer Materials: A Review, Iranian Polymer Journal, Vol. 17, No. 6, Pages 451-477, 2008
    楊承學,高分子凝膠之依時性破壞及表面穩定性分析,國立成功大學博士論文,2018

    無法下載圖示 校內:2024-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE