簡易檢索 / 詳目顯示

研究生: 劉京樺
Liu, Ching-Hua
論文名稱: 具微晶漸變能隙本質緩衝層之矽基薄膜太陽能電池特性研究
Performance Investigation of Silicon-Based Thin Film Solar Cells with Microcrystal Graded-Bandgap Intrinsic Buffer Layer
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 漸變本質微晶矽化碳緩衝層微晶矽雷射輔助電漿增強式化學氣相沉積系統
外文關鍵詞: graded buffer layer, microcrystalline silicon solar cell, laser assisted plasma enhanced chemical vapor deposition system
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用二氧化碳雷射輔助電漿增強式化學氣相沉積系統進行本質微晶矽薄膜之鍍製,並將其應用於p-非晶矽化碳/i-微晶矽/n-非晶矽薄膜太陽能電池中。一般非晶矽薄膜太陽能電池在長期照光下,於非晶矽吸收層中會有光劣化現象的產生,進而導致太陽能電池的轉換效率下降。為改善此現象,本研究利用微晶矽薄膜取代非晶矽薄膜作為矽基薄膜太陽能電池的吸收層,因微晶矽薄膜與非晶矽薄膜相比,具有較高的載子遷移率,且其具有較低的能隙,所以可以增加太陽能電池對長波長的光之吸收能力。因此以微晶矽薄膜作為矽基薄膜太陽能電池的吸收層,其可改善太陽能電池的轉換效率,使元件效率由以非晶矽為吸收層的4.67 %提升至5.50 %。另一方面,以雷射輔助電漿增強式化學氣相沉積系統所製備之微晶矽薄膜與非晶矽薄膜相比,其具有較低的能隙值,此時p/i接面因能隙值差異,而導致能隙不連續及接面間的能位障,並產生能帶偏移,因而在接面間會有較多的復合中心存在,其會造成光生載子被復合的機率增加,所以部分的光生載子無法有效地被順利萃取出來,並產生漏電路徑,限制了整體太陽能電池元件效率。本研究為改善在p/i接面的復合現象,因此於p/i接面成長漸變能隙本質微晶矽化碳緩衝層,藉由摻入不同流量比之甲烷,調變本質微晶矽化碳緩衝層能隙值,使p/i接面能位障得以減緩,能隙可以連續,藉此改善接面間的缺陷,減少光生載子被復合的機率,最終具微晶漸變能隙本質緩衝層之矽基薄膜太陽能電池效率提升至6.31 %。

    In this thesis, the intrinsic microcrystalline silicon (μc-Si) films was deposited using laser assisted plasma enhanced chemical vapor deposition (LAPECVD) system and applied to p-i-n thin film solar cells. After the prolonged light illumination, the efficiency of amorphous silicon (α-Si) thin film solar cells was decreased because of the light-induced degradation in the absorption layer. To improve the above mention, the μc-Si films were utilized to replace the α-Si films as the absorption layer for Si-based thin film solar cells. Compared with the α-Si films, the μc-Si films had higher carrier mobility and lower energy bandgap, which could increase the absorption ability at long wavelength of light. Consequently, the conversion efficiency of Si-based thin film solar cells used μc-Si thin film as the absorption layer was improved from 4.67 % to 5.50 %. In addition, the lower energy band-gap of μc-Si films using LAPECVD system caused the energy band-gap discontinuity and energy barrier height at the p/i interfaces, which generated band offset, critical carrier recombination, and numerous leakage current during the photocurrent extraction. Therefore, the conversion efficiency of solar cells was restricted. In this thesis, the i-c-SiC buffer layer with graded energy bandgap was inserted to p/i interface by varying the flow ratios of silane to methane to improve the energy bandgap discontinuity and the defect at p/i interface, which could reduce the carrier recombination probability within p/i interface. Finally, the conversion efficiency of Si-based thin film solar cells with microcrystal graded-bandgap intrinsic buffer layer was further enhanced to 6.31 %.

    摘要 I 致謝 VII 表目錄 XIV 圖目錄 XVI 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 第二章 實驗原理簡介 5 2.1 太陽能電池工作原理 5 2.1.1 光電轉換原理 5 2.1.2 太陽能電池電流-電壓特性 5 2.1.3 內建電場 6 2.1.4 填充因子 7 2.1.5 漏電流及串、並聯電阻 7 2.1.6 轉換效率 8 2.1.7 太陽能光譜 8 2.2 矽薄膜製程系統及沉積方式簡介 9 2.2.1 雷射輔助電漿增強式化學氣相沉積系統 9 2.2.2 化學氣相沉積原理 11 2.3 薄膜光電特性量測系統原理 12 2.3.1 傅立葉轉換紅外線光譜分析儀 12 2.3.2 拉曼光譜分析儀 13 2.3.3 分光光譜分析儀 14 2.3.4 量子效率量測系統 15 2.3.5 轉換效率量測系統 15 2.4 矽薄膜之氫含量計算方式 16 2.5 矽薄膜之光學能隙計算方式 17 2.6 太陽能電池之串並、聯電阻估算方式 17 2.7 太陽能電池之能帶關係 18 第三章 元件製作流程 29 3.1 元件製程 29 3.1.1 元件結構設計 29 3.1.2 試片清潔 29 3.1.3 二氧化碳雷射輔助之矽基薄膜沉積 30 3.1.4 緩衝層沉積 30 3.1.5 元件製作 32 3.1.6 背部電極層製作 33 第四章 微晶漸變能隙之太陽能電池薄膜及元件特性分析 35 4.1 具雷射輔助成長本質矽薄膜之元件特性分析 35 4.1.1 不同雷射與試片距離成長本質矽薄膜之氫含量分析 35 4.1.2 不同雷射與試片距離成長本質矽薄膜之結晶率分析 37 4.1.3 具雷射輔助成長本質微晶矽吸收層之太陽能電池特性分析 38 4.2 本質微晶緩衝層之薄膜光學能隙分析 39 4.2.1 本質微晶矽化碳薄膜之光學能隙分析 40 4.3 具本質微晶矽化碳緩衝層之太陽能電池元件特性分析 40 4.3.1 具不同中間能隙本質微晶矽化碳緩衝層厚度之太陽能電池暗電流分析 41 4.3.2 具不同中間能隙本質微晶矽化碳緩衝層厚度之太陽能電池特性分析 41 4.3.3 具不同中間能隙本質微晶矽化碳緩衝層厚度之太陽能電池外部量子效率分析 43 4.3.4 具漸變能隙本質微晶矽化碳緩衝層之太陽能電池元件特性分析 44 第五章 結論 60 參考文獻 62

    [1] 戴寶通、鄭晃忠,《太陽能電池技術手冊》,台灣電子材料與元件協會發行出版。
    [2] 翁敏航,《太陽能電池―原理、元件、材料、製程與檢測技術》,東華書局股份有限公司。
    [3] T. Karakawa, S. Higashi, H. Murakami and S. Miyazaki, “Nucleation study of hydrogenated microcrystalline silicon (µc-Si:H) films deposited by VHF-ICP”, Thin Solid Films, vol. 516, p. 3497, 2008.
    [4] B. Rech, T. Roschek, J. Müller, S. Wieder, and H. Wagner, “Amorphous and microcrystalline silicon solar cells prepared at high deposition rates using RF (13.56 MHz) plasma excitation frequencies”, Solar Energy Materials and Solar Cells, vol. 66, p. 267, 2001.
    [5] Y. N. Guo, D. Y. Wei, S. Q. Xiao, S. Y. Huang, H. P. Zhou, and S. Xu, “Effect of silane/hydrogen ratio on microcrystalline silicon thin films by remote inductively coupled plasma”, Journal of Applied Physics, vol. 113, p. 203505, 2013.
    [6] H. Y. Lee, Y. C. Lin, C. H. Chang, and C. Y. Tseng, “High performance and high stability mechanisms of microcrystalline silicon-based thin-film solar cells deposited by laser-assisted plasma-enhancement chemical vapor deposition system”, Solar Energy, vol. 107, p. 365, 2014.
    [7] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, vol. 31, p. 292, 1977.
    [8] L. W. Lai, H. Y. Lee, J. H. Cheng, and C. T. Lee, “Investigation of laser-assisted microcrystalline SiGe films deposited at low temperature”, Journal of Electronic Material, vol. 37, p. 167, 2008.
    [9] C. T. Lee, Y. F. Chen, and C. H. Lin, “Phase-separated Si nanoclusters form Si oxide matrix grown by laser-assisted chemical vapor deposition”, Nanotechnology, vol. 20, p. 025702, 2008.
    [10] C. T. Lee and M. Y. Tsai, “High performance mechanisms of near -infrared photodetectors with microcrystalline SiGe films deposited using laser-assisted plasma enhanced chemical vapor deposition system”, Optics Express, vol. 21, p. 6259, 2013.
    [11] A. Belfar, “Simulation study of the a-Si:H/nc-Si:H solar cells performance sensitivity to the TCO work function, the band gap and the thickness of i-a-Si:H absorber layer”, Solar Energy, vol. 144, p. 408, 2015.
    [12] O. Maslova, A. Brézard-Oudot, M. E. Gueunier-Farret, J. Alvarez, W. Favre, D. Muñoz, A.S. Gudovskikh, and J. P. Kleider, “Temperature and bias dependence of hydrogenated amorphous silicon-crystalline silicon heterojunction capacitance : the link to band bending and band offset”, Canadian Journal of Physics, vol. 92, p. 690, 2014.
    [13] C. H. Lee, B. J. Kim, and M. Shin, “H2 plasma treatment at the p/i interface of a hydrogenated amorphous Si absorption layer for high-performance Si thin film solar cells”, Progress in Photovoltaics: Research and Application, vol. 22, p. 362, 2014.
    [14] J. Ge, Z. P. Ling, J. Wong, T. Mueller, and A. G. Aberle, “Optimisation of intrinsic a-Si:H passivation layers in crystalline-amorphous silicon heterojunction solar cells”, Energy Procedia, vol. 15, p. 107, 2012.
    [15] R. Biron, C. Pahud, and F. J. Haug, “Window layer with p doped silicon oxide for high Voc thin-film silicon n-i-p solar cells”, Journal of Applied Physics, vol. 110, p. 124511, 2011.
    [16] R. Biron, C. Pahud, and F. J. Haug, “Origin of the Voc enhancement with a p-doped nc-SiOx:H window layer in n-i-p solar cells”, Journal of Non-Crystalline Solids, vol. 358, p. 1958, 2012.
    [17] A. Belfar and H. Aït-Kaci, “ITO/p+nc-Si:H contact barrier effects on n-i-p′-p silicon solar cells performances”, Solar Energy Materials and Solar Cells, vol. 178, p. 438, 2013.
    [18] G. Hou, J. Fang, Q. H. Fan, G. Hou, J. Fang, Q. Fan, C. Wei, J. Ni, X. Zhang, and Y. Zhao, “Nanostructured silicon p-layer obtained by radio frequency power profiling process for high-efficiency amorphous silicon solar cell”, Solar Energy Materials and Solar Cells, vol. 134, p. 395, 2015.
    [19] 張勁燕,《半導體製程設備》,五南圖書出版公司。
    [20] H. Y. Lee, T. C. Wang, and C. Y. Tseng, “Performance improvement of microcrystalline p-SiC/i-Si/n-Si thin film solar cells by using laser-assisted plasma enhanced chemical vapor deposition”, International Journal of Photoenergy, vol. 2014, p. 795152, 2014.
    [21] H. Xiao, Introduction to semiconductor manufacturing technology, Prentice Hall, 2000.
    [22] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Physical Review B, vol. 45, p. 13367, 1992.
    [23] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Materials Research Bulletin, vol. 3, p. 37, 1968.
    [24] M. Kim, B. Kim, and J. Kim, “Effective variables to control the fill factor of organic photovoltaic cells”, ACS applied materials and interfaces, vol. 1, p. 1264, 2009.
    [25] D. Pysch, A. Mette, and S. W Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Solar Energy Materials and Solar Cells, vol. 91, p. 1698, 2007.
    [26] 施敏,《半導體元件與製作技術第三版》,國立交通大學出版。
    [27] Y. Poissant, P. Chatterjee, and P. Roca i Cabarrocas, “No benefit from microcrystalline silicon n layers in single junction amorphous silicon p-i-n solar cells”, Journal of Applied Physics, vol. 93, p. 170, 2003.
    [28] S. Guha, J. Yang, D. L. Williamson, Y. Lubianiker, J. D. Cohen, and A. H. Mahan, “Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity”, Applied Physics Letters, vol. 74, p. 1860, 1999.
    [29] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H∕c-Si solar cells”, Applied Physics Letters, vol. 90, p. 013503, 2007.
    [30] N. H. Thoan, M. Jivanescu, B. J. Osullivan, L. Pantisano, I. Gordon, V. V. Afanasev, and A. Stesmans, “Correlation between interface traps and paramagnetic defects in c-Si/a-Si:H heterojunctions”, Applied Physics Letters, vol. 100, p. 142101, 2012.
    [31] Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov, and P. R. I. Cabarrocas, “Decoupling crystalline volume fraction and Voc in microcrystalline silicon pin solar cells by using a µc‐Si:H intrinsic layer”, physica status solidi (RRL)-Rapid Research Letters, vol. 2, p. 154, 2008.
    [32] J. Meier, R. Flückiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell – Crystalline or amorphous cell behavior”, Applied Physics Letters, vol. 65, p. 860, 1994.
    [33] Z. Yu, I. Pereyra, and M.N.P. Carreno, “Wide optical band gap window layers for solar cells”, Solar Energy Materials and Solar Cells, vol. 66, p. 155, 2001.
    [34] C. Guarneros, B. Rebollo-Plata, R. Lozada-Morales, J.E. spinosa-Rosales, J. Portillo-Moreno, and O. Zelaya-Angel, “Forbidden energy band gap in diluted a-Ge1-xSix:N films”, Thin Solid Films, vol. 520, p. 5463, 2012.
    [35] Y. Tawada, M. Kondo, H. Okamoto, and Y. Hamakawa, “Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells”, Solar Energy Materials, vol. 6, p. 299, 1982.
    [36] A. Soum-Glaude, L. Thomas, and E. Tomasella, “Amorphous silicon carbide coatings grown by low frequency PACVD: Structural and mechanical description, Surface and Coatings Technology, vol. 200, p. 6425, 2006.
    [37] L. Shen, F. Meng, and Z. Liu, “Roles of the Fermi level of doped a-Si:H and band offsets at a-Si:H/c-Si interfaces in n-type HIT solar cells“, Solar Energy, vol. 97, p. 168, 2013.
    [38] X. B. Liao, W. Wang, and X. Deng, “AMPS modeling of nanocrystalline si p-layer in a-Si nip solar cells”, IEEE Photovoltaic Specialists Conference, p. 1234, 2002.

    下載圖示 校內:2021-08-05公開
    校外:2021-08-05公開
    QR CODE