簡易檢索 / 詳目顯示

研究生: 王凱弘
Wang, Kai-Hung
論文名稱: 光子於雙折射晶體中非馬可夫動力學之研究
Non-Markovianity of Photon Dynamics In A Birefringent Crystal
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 61
中文關鍵詞: 非馬可夫性質之量度雙折射晶體光子動力學量子過程斷層掃描
外文關鍵詞: non-Markovian criteria, birefringent crystal, photon dynamics, quantum process tomography
相關次數: 點閱:88下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非馬可夫性質是系統動力學中描述系統與環境交互作用的重要特徵,因此非馬可夫動力學的研究在量子資訊、量子通訊等量子工程領域中扮演了重要的角色。在這篇論文中,我們以一個客觀且有組織的方法研究了光子在雙折射晶體中的動力學。藉由一項以全光學實驗討論光子在雙折射晶體動力學中非馬可夫性質的重要工作 [B.-H. Liu et al., Nature Phys. 7, 931 (2011)],我們利用了其中有限的實驗數據,準確地描述該實驗中光子的動力學,並藉此比較目前主要幾種非馬可夫量度對於分析光子偏振在雙折射晶體中動力學之結果;我們展現了以量化量子過程為基礎的非馬可夫量度,可以成功鑑別出在該實驗中以其他非馬可夫量度偵測不到的非馬可夫性質。與目前其他基於分析狀態特性的非馬可量度相比,量化光子動力學中量子過程的方法對於鑑別光子在雙折射晶體中非馬可夫動力學能具有更好的解析度。另外,我們也展示了在這樣高解析度的非馬可夫量度下,如何透過光學實驗辨別光子的非馬可夫動力學,並且能對於需要討論系統與環境作用的量子工程提供更精確的設計。

    Non-Markovianity of a dynamical process characterizes the interaction between a principal system and an environment. Hence, the study in the non-Markovian dynamics plays an important role for quantum engineering. In this thesis, we investigate the non-Markovian dynamics of photon polarization in a birefringent crystal with an objective and organized approach. Following the limited experimental data of the seminal experiment on the non-Markovian effect [B.-H. Liu et al., Nature Phys. 7, 931 (2011)], we precisely describe the photon dynamics in that experiment in the form of process matrix. With it, we then compare different non-Markovian criteria by identifying the non-Markovianity of the constructed processes. In this thesis, we show that all the processes identified as Markovian in the experiment of Liu et al. can be indeed certified as non-Markovian dynamics. Compared with the existing verifications based on the analysis of state properties, the method of quantifying quantum composition of the photon dynamics has finer resolution in identifying non-Markovian processes for photons in the birefringent crystal. Our result demonstrates an experimentally feasible characterization of photon dynamics using an all-optical set-up and could promote an accurate design for system-environment quantum engineering.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vii List of Figures viii Nomenclature xi Chapter 1. Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Purpose 4 1.4 Outline 5 Chapter 2. Quantum Operations Formalism and Quantum Tomography 7 2.1. Quantum operations formalism 7 2.2. Quantum state tomography 8 2.3. Quantum process tomography 9 Chapter 3. Quantifying Quantum-Mechanical Process 11 3.1. Classical process and quantum-mechanical process 11 3.1.1. Definitions of classical process and quantum-mechanical process 11 3.1.2. Programming for classical process of single two-dimension system 12 3.2. Tools for quantifying the classical process and quantum-mechanical process 15 3.2.1. Quantum composition 15 3.2.2. Quantum robustness 16 Chapter 4. Quantum Markovian Process and Non-Markovian Criteria 19 4.1. Definition of quantum Markovian process 19 4.2. The Breuer-Laine-Piilo (BLP) non-Markovian criterion 20 4.3. The Rivas-Huelga-Plenio (RHP) non-Markovian criterion 21 4.4. The Luo-Fu-Song (LFS) non-Markovian criterion 23 4.5. The Hsieh-Chen-Li (HCL) non-Markovian criteria 24 Chapter 5. Non-Markovianity of the Photon Dynamics in a Birefringent Crystal 26 5.1. Photonic interaction mediated by a birefringent crystal 26 5.2. The experimental results of Liu et al. 28 5.3. Non-Markovianity certified by the HCL criteria 31 5.3.1. Construction of the experimental process matrix χθt 31 5.3.2. Identifying non-Markovianity by the criteria (4.6) 37 5.3.3. Identifying non-Markovianity by the criteria (4.7) 38 5.4. Discussions 39 5.4.1. Comparisons 39 5.4.2. Switching non-Markovian photon dynamics to Markovian dynamical process 40 Chapter 6. Summary and Outlook 44 6.1. Summary 44 6.2. Outlook 44 References 46 Appendix A. The paper submitted for publication 50

    [1] R. Shankar, Principles of Quantum Mechanics. Springer Science & Business Media, 2012.

    [2] M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition. New York, NY, USA: Cambridge University Press, 2002.

    [3] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems. Oxford University Press on Demand, 2002.

    [4] I. de Vega and D. Alonso, “Dynamics of non-Markovian open quantum systems,” Review of Modern Physics., vol. 89, p. 015001, Jan 2017.

    [5] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-Markovian dynamics in open quantum systems,” Reviews of Modern Physics, vol. 88, no. 2, p. 021002, 2016.

    [6] H.-P. Breuer, “Foundations and measures of quantum non-Markovianity,” Journal of Physics B: Atomic, molecular and optical physics, vol. 45, no. 15, p. 154001, 2012.

    [7] B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo, and H. -P. Breuer, “Markovianity and non-Markovianity in quantum and classical systems,” New Journal of Physics, vol. 13, no. 9, p. 093004, 2011.

    [8] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-Markovianity: characterization, quantification and detection,” Reports on Progress in Physics, vol. 77, no. 9, p. 094001, 2014.

    [9] H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-Markovian behavior of quantum processes in open systems,” Physical Review Letter, vol. 103, p. 210401, 2009.

    [10] E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-Markovianity of quantum processes,” Physical Review A, vol. 81, no. 6, p. 062115, 2010.

    [11] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-Markovianity of quantum evolutions,” Physical Review Letter, vol. 105, p. 050403, 2010.

    [12] S. Luo, S. Fu, and H. Song, “Quantifying non-Markovianity via correlations,” Physical Review A, vol. 86, p. 044101, 2012.

    [13] H.-B. Chen, J.-Y. Lien, G.-Y. Chen, and Y.-N. Chen, “Hierarchy of non-Markovianity and k-divisibility phase diagram of quantum processes in open systems,” Physical Review A, vol. 92, no. 4, p. 042105, 2015.

    [14] P. Haikka, J. D. Cresser, and S. Maniscalco, “Comparing different non-Markovianity measures in a driven qubit system,” Physical Review A, vol. 83, no. 1, p. 012112, 2011.

    [15] M. Mannone, R. L. Franco, and G. Compagno, “Comparison of non-Markovianity criteria in a qubit system under random external fields,” Physica Scripta, vol. 2013, no. T153, p. 014047, 2013.

    [16] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems,” Nature Physics, vol. 7, no. 12, p. 931, 2011.

    [17] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, “Quantifying quantum-mechanical processes,” Scientific reports, vol. 7, no. 1, p. 13588, 2017.

    [18] B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Photonic realization of nonlocal memory effects and non-Markovian quantum probes,” Scientific reports, vol. 3, p. 1781, 2013.

    [19] S. H. Raja, G. Karpat, E.-M. Laine, S. Maniscalco, J. Piilo, C.-F. Li, and G.-C. Guo, “Remote polarization-entanglement generation by local dephasing and frequency up-conversion,” Physical Review A, vol. 96, no. 1, p. 013844, 2017.

    [20] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. Gunner, W. Junge, D. M. Kramer, A. Melis, et al., “Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement,” Science, vol. 332, no. 6031, pp. 805–809, 2011.

    [21] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, p. 782, 2007.

    [22] N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, “Quantum biology,” Nature Physics, vol. 9, no. 1, p. 10, 2013.

    [23]  E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, and G. D. Scholes, “Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature,” Nature, vol. 463, no. 7281, p. 644, 2010.

    [24] G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel, “Long-lived quantum coherence in photosynthetic complexes at physiological temperature,” Proceedings of the National Academy of Sciences, vol. 107, no. 29, pp. 12766–12770, 2010.

    [25] M. B. Plenio and S. F. Huelga, “Dephasing-assisted transport: quantum networks and biomolecules,” New Journal of Physics, vol. 10, no. 11, p. 113019, 2008.

    [26] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, “Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport,” The Journal of Chemical Physics, vol. 131, no. 10, p. 09B612, 2009.

    [27] M. Mohseni, A. Shabani, S. Lloyd, Y. Omar, and H. Rabitz, “Geometrical effects on energy transfer in disordered open quantum systems,” The Journal of chemical physics, vol. 138, no. 20, p. 204309, 2013.

    [28] A. W. Chin, Á. Rivas, S. F. Huelga, and M. B. Plenio, “Exact mapping between system- reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials,” Journal of Mathematical Physics, vol. 51, no. 9, p. 092109, 2010.

    [29] G. R. Fowles, Introduction to Modern Optics. Courier Corporation, 1989.

    [30] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2004.

    [31] K. Kraus, States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, 1983.

    [32] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Reviews of Modern Physics, vol. 81, no. 2, p. 865, 2009.

    [33] V. Vedral, “The role of relative entropy in quantum information theory,” Reviews of Modern Physics, vol. 74, no. 1, p. 197, 2002.

    [34] I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics, vol. 44, no. 11-12, pp. 2455–2467, 1997.

    [35] J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.

    [36] M. Mohseni, A. Rezakhani, and D. Lidar, “Quantum-process tomography: Resource analysis of different strategies,” Physical Review A, vol. 77, no. 3, p. 032322, 2008.

    [37] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “On the implementation and usage of sdpt3–a matlab software package for semidefinite-quadratic-linear programming, version 4.0,” Handbook on semidefinite, conic and polynomial optimization, Springer, pp. 715–754, 2012.

    [38] J. Löfberg, “Computer aided control systems design,” in 2004 IEEE International Symposium on, pp. 284–289, 2004.

    [39] P. Skrzypczyk, M. Navascués, and D.Cavalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Physical Review Letter, vol. 112, p. 180404, 2014.

    [40] C. Napoli, T. R. Bromley, M. Cianciaruso, M. Piani, N. Johnston, and G. Adesso, “Ro- bustness of coherence: An operational and observable measure of quantum coherence,” Physical Review Letter, vol. 116, p. 150502, 2016.

    [41] A.Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer Science & Business Media, 2012.

    [42] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems,” Journal of Mathematical Physics, vol. 17, no. 5, pp. 821–825, 1976.

    [43] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, no. 2, pp. 119–130, 1976.

    [44] M. M. Wolf and J. I. Cirac, “Dividing quantum channels,” Communications in Mathematical Physics, vol. 279, no. 1, pp. 147–168, 2008.

    [45] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Physical Review Letter, vol. 80, pp. 2245–2248, 1998.

    [46] A. J. Berglund, “Quantum coherence and control in one-and two-photon optical systems,” arXiv preprint quant-ph/0010001, 2000.

    [47] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, “Experimental verification of decoherence-free subspaces,” Science, vol. 290, no. 5491, pp. 498–501, 2000.

    [48] J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, and G.-C. Guo, “Experimental investigation of classical and quantum correlations under decoherence,” Nature communications, vol. 1, p. 7, 2010.

    [49] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, “Nonlocal memory effects in the dynamics of open quantum systems,” Physical review letters, vol. 108, no. 21, p. 210402, 2012.

    [50] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, “Erratum: Nonlocal memory effects in the dynamics of open quantum systems [Phys. Rev. Lett. 108, 210402 (2012)],” Physical Review Letters, vol. 111, no. 22, p. 229901, 2013.

    [51] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Physical Review A, vol. 64, p. 052312, 2001.

    下載圖示 校內:2023-07-10公開
    校外:2023-07-10公開
    QR CODE