簡易檢索 / 詳目顯示

研究生: 趙子瑄
Chao, Tzu-Hsuan
論文名稱:
指導教授: 鄭沐政
Cheng, Mu-Jeng
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 56
中文關鍵詞: 石墨烯環氧化喹啉鹽類蒽醌反應位向選擇性
外文關鍵詞: Graphenes, Epoixdation, Quinolinium salts, Anthranils, Regioselectivity
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環氧化物的製備在工業上有重要的應用1,因環氧化物可作為許多不同有機物的中間產物或是起始物2,歸因於其具有活性的三元環中心,其可以進行開環反應。環氧化物中,產量最多且最為重要的為環氧乙烷,因可以拿來進行開環反應得到乙二醇3,乙二醇為常用的抗凍劑,在工業上的用途十分廣泛。目前環氧化物的合成主要有三種方式,分別為氧氣搭配銀催化劑、過氧酸4, 5、鹵醇等三種反應試劑去進行反應,然而這些製程上仍會面臨到一些問題:需要一定的溫度進行反應、較貴的催化劑、需要額外添加氧化劑6。因此在本篇論文中將探討使用電化學反應搭配析氧反應產生Metal-oxo結構來將烯類氧化變成環氧化物,所使用的催化劑為四氮錯合金屬之石墨烯(簡稱gMN4,M=Fe or Ir)7,因先前的研究已知gFeN4以及gIrN4可以透過析氧反應8產生具有反應性的oxo並進行C-H鍵活化反應9,在本研究將使用此兩種催化劑,利用VASP10-12進行模擬,計算此兩種催化劑的Metal-oxo在四種烯類上進行催化的活化能以及反應自由能,選用的烯類為乙烯、反-2-丁烯、苯乙烯、環己烯,各代表不同環境的烯類。
    由計算結果得知,反-2-丁烯以及苯乙烯利用gIrN4進行催化可以得到其活化能在USHE =1 V的情況下低於0.75eV,表示對於此兩個烯類來說有良好的反應性。而乙烯及環己烯的活化能則位於1~0.75 eV之間,顯示其活化能較高,反應性較不理想。除了反應性之外,本篇論文也探討了選擇性,反-2-丁烯與其競爭反應hydroxylation13,1,2-hydride shift14以及deprotonation比較都可以得到較低的活化能,同樣在苯乙烯的狀況下,環氧化反應的活化能也低於其他的競爭反應,因此可以確定使用gFeN4及gIrN4催化反-2-丁烯及苯乙烯進行環氧化反應可以有良好的反應性及選擇性。
    喹啉鹽類可以做為藥物化學上使用的前驅物15,目前合成喹啉鹽類的方式主要是透過N上的孤對電子攻擊進行親核性加成16,但此法只能獲得N-alkyl的產物,因此本篇論文將探討在喹啉鹽類的另外一個合成途徑,使用苯胺、醛類、炔類進行合成17, 18。其中的關鍵4+2環加成是否為逐步或是一步反應,並且分析其反應位向,將活化能區分為扭曲能及作用能。本研究利用gaussian0919進行計算,最後得知其反應路徑中的關鍵步驟為一步反應,其中沒有中間產物的存在,且反應位向由扭曲能決定,當進入過渡態時不會偏折到炔類接上苯環的那一邊時,扭曲能較低,因此反應位向會傾向於苯環取代基在對位的產物。總結來說,本反應為一步 4+2環加成,且產物的取代基位置受到炔類取代基苯環的影響,使得產物只有其中一種。
    氮-氧鍵基團存在在許多不同的藥物上,因此合成此類的環狀化合物對於藥物化學的合成十分重要,在先前合成類似的化合物的路徑中,通常是進行4+3環加成,在先前的研究曾經利用三角環20的結構搭配蒽醌進行反應,完成此環加成反應,然而不具有特定的exo立體位向選擇性,而立體位向對於藥物的合成上十分重要,因往往只有特定的光學活性中心才可以具有預期藥物所有的功能。在本篇研究中,使用了蒽醌及炔基搭配金的催化劑進行具有立體位項選擇性的4+3環加成,其中造成產物只有exo為主的原因來自於金的催化劑在過渡態的立體位向,因其基團進行攻擊的方式不一樣,總共會有四個非光學異構物存在,其中只有本次得到產物的反應路徑具有明顯較低的活化能,證明金的催化劑在本反應的高度立體位向選擇性而扮演重要的角色。

    Preparations of epoxide are important industrial processes since epoxides can be used as starting material or intermediates for many reactions. However, the oxidizing agents used in the processes lead to capital cost. In the chapter 1, we discuss the epoxidation reaction using water as oxygen source with carbon-based materials: metal-N4-functionalized graphene(noted as gMN4, Metal = Fe, Ir) as catalysts. We examine four kinds of alkenes: Ethene, Trans-2-butene, Styrene and Cyclohexene. The results show that the epoxidation of Trans-2-butene and styrene will have barriers lower than 0.75 eV, which shows good reactivity. For selectivity, we discuss hydroxylation, 1,2-hydride shift and deprotonation. The three reaction will have higher activation energy than any steps in epoxidation. Using gFeN4 and gIrN4 can catalyze the epoxidation of both alkenes.
    Quinolinium salts are precursors for many drugs. The main synthesis method is nucleophilic attack through lone pair electrons of nitrogen which leads to N-alkyl product. In chapter two, we discuss a new synthesis method using aniline-aldehyde-alkyne and Lewis acid and compute the reaction using Gaussian09. The key step is 4+2 cyclization which is a concerted reaction.
    Nitroxy group exists in many drugs. In previous synthesis route, 4+3 annulation using three-membered ring and anthranils lead to no enantioselectivity product. In the chapter three, we discuss a new route using Anthranils, alkyne group and gold catalyst with Jaguar software. The product is highly enantioselective(exo). The computational result shows that the exo product route has lowest activation energy among all the possible products.

    第一章 緒論 1 1-1 析氧反應(Oxygen Evolution Reaction) 1 1-2 電壓模型 5 1-3 水的質子轉移模型 7 第二章 以四氮錯合金屬之石墨烯作為催化劑進行電化學環氧化反應 10 2-1 環氧化物的合成 10 2-2 四氮錯合金屬之石墨烯 11 2-3 烯類電化學環氧化反應機構 15 2-4烯類環氧化副產物: 16 2-5析氧反應反應產生oxo的範圍(pourbaix diagram) 17 2-6計算軟體方法與參數 18 2-7結果與討論 20 2-8結論: 32 第一章-附錄 33 第三章 以氮取代苯胺、醛、炔及路易士酸合成喹啉鹽類:反應機構與選擇性的探討 36 3- 1喹啉鹽類 36 3- 2喹啉鹽類的合成 37 3- 3計算軟體方法與參數 38 3- 4結果與討論 39 3-5結論 44 第四章 金催化高度立體化學選擇性反應:蒽醌與2-(1-炔基)-2-烯-1-酮進行4+3環加成反應 45 4-1 氮氧基團的藥物化學及合成 45 4- 2計算軟體方法與參數 47 4-3結果與討論 47 4-4結論 51 參考文獻 52   表目錄 表格 1、gFeN4之各烯類的環氧化活化能 33 表格 2、gIrN4之各烯類的環氧化活化能 33 表格 3、gFeN4之活化能對電壓的線性關係直線 34 表格 4、gIrN4之活化能對電壓的線性關係直線 35 表格 5、喹啉合成的最佳條件如下: 39 表格 6、不同炔類取代基在路徑A及路徑B的活化能及反應熱 41 表格 7、4+3環加成反應最佳反應條件 47   圖目錄 圖 1、析氧反應的反應途徑 1 圖 2、範例催化劑析氧反應能量曲面 3 圖 3、得最佳析氧反應催化劑的理想能量曲面 4 圖 4、各催化劑的催化力與O*-OH*的關係火山圖 4 圖 5、Surface Sum-Frequency Spectroscopy圖譜 8 圖 6、水合質子在各個面向的圖譜展現的峰值以及對應其預測的分子角度 8 圖 7、乙烯的銀催化環氧化反應 10 圖 8、過氧酸以及鹵醇類作為氧化劑進行環氧化反應的反應機構 11 圖 9、四氮錯合金屬之石墨烯表面STEM圖 12 圖 10、析氧反應(OER)的四個步驟及位能圖 13 圖 11、析氧反應(OER)催化劑的過電壓 13 圖 12、文獻實驗CV圖 14 圖 13、氯原子參與催化反應的反應機構 15 圖 14、使用Mn氧化物催化析氧反應以及環氧化反應 15 圖 15、環氧化反應及其競爭反應羥基化的反應機構37 16 圖 16、環氧化物的反應循環以及1,2 氫轉移產生副產物的反應機構14 17 圖 17、Fe pourbaix diagram 及 Ir pourbaix diagram 18 圖 18、本次研究所使用的模型 19 圖 19,本次研究使用的四種烯類結構 20 圖 20、gFeN4催化乙烯環氧化能量曲面 21 圖 21、gFeN4催化環己烯環氧化能量曲面 22 圖 22、gFeN4催化苯乙烯環氧化能量曲面 23 圖 23、gFeN4催化反-2-丁烯環氧化能量曲面 24 圖 24、gIrN4催化乙烯環氧化能量曲面 25 圖 25、gIrN4催化環己烯環氧化能量曲面 26 圖 26、gIrN4催苯乙烯環氧化能量曲面 27 圖 27、gIrN4催反-2-丁烯環氧化能量曲面 28 圖 28、環氧化反應選擇性 29 圖 29、在oxo區域環氧化及羥基化可以達到0.75 eV所需要的電壓 30 圖 30、1,2氫轉移與成環反應的結構 30 圖 31、脫氫反應的結構 31 圖 32、脫氫反應與脱附反應的活化能比較 31 圖 33 喹啉鹽類的衍生藥物 36 圖 34喹啉鹽類做光敏試劑的反應機構43 37 圖 35、喹啉進行直接N-烷基加成的反應 37 圖 36、苯胺(Aniline)、醛類(Aldehyde)、炔類(Alkyne)以及路易士酸反應51 38 圖 37、本反應產物位向 39 圖 38、喹啉合成關鍵步驟途徑A與途徑B的產物 40 圖 39、途經A與途徑B的過渡態結構以及扭曲能及作用能的分解能量圖 41 圖 40、提供電子的軌域(左)及接收電子的軌域(右) 43 圖 41、本反應總反應曲面 43 圖 42、含有N-O基團的各種藥物 45 圖 43、N-O基團過去的合成法及本篇的合成法 46 圖 44、Gram-scale合成 48 圖 45、本反應總反應曲面圖 49 圖 46、四種過渡態的結構 50 圖 47、四種過渡態的模型結構 51

    1. Xia, Q. H.; Ge, H. Q.; Ye, C. P.; Liu, Z. M.; Su, K. X., Advances in Homogeneous and Heterogeneous Catalytic Asymmetric Epoxidation. Chemical Reviews 2005, 105 (5), 1603-1662.
    2. Bohnet, M., Ullmann's encyclopedia of industrial chemistry. Wiley-Vch: 2003.
    3. Wang, A.; Zhang, T., One-Pot Conversion of Cellulose to Ethylene Glycol with Multifunctional Tungsten-Based Catalysts. Accounts of Chemical Research 2013, 46 (7), 1377-1386.
    4. Kim, C.; Traylor, T. G.; Perrin, C. L., MCPBA Epoxidation of Alkenes: Reinvestigation of Correlation between Rate and Ionization Potential. 1998, 120 (37), 9513-9516.
    5. Umemoto, T.; Harasawa, K.; Tomizawa, G.; Kawada, K.; Tomita, K., Syntheses and properties of N-fluoropyridinium salts. 1991, 64 (4), 1081-1092.
    6. Jin, K.; Maalouf, J. H.; Lazouski, N.; Corbin, N.; Yang, D.; Manthiram, K., Epoxidation of Cyclooctene Using Water as the Oxygen Atom Source at Manganese Oxide Electrocatalysts. Journal of the American Chemical Society 2019, 141 (15), 6413-6418.
    7. Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H., General synthesis and definitive structural identification of MN 4 C 4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis 2018, 1 (1), 63-72.
    8. Man, I. C.; Su, H. Y.; Calle‐Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem 2011, 3 (7), 1159-1165.
    9. Luo, J.-H.; Hong, Z.-S.; Chao, T.-H.; Cheng, M.-J., Quantum Mechanical Screening of Metal-N4-Functionalized Graphenes for Electrochemical Anodic Oxidation of Light Alkanes to Oxygenates. The Journal of Physical Chemistry C 2019, 123 (31), 19033-19044.
    10. Kresse, G.; Hafner, J., Ab initiomolecular dynamics for liquid metals. Physical Review B 1993, 47 (1), 558-561.
    11. Kresse, G.; Hafner, J., Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49 (20), 14251-14269.
    12. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-50.
    13. Terencio, T.; Andris, E.; Gamba, I.; Srnec, M.; Costas, M.; Roithová, J., Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. Journal of The American Society for Mass Spectrometry 2019, 30 (10), 1923-1933.
    14. Hammer, S. C.; Kubik, G.; Watkins, E.; Huang, S.; Minges, H.; Arnold, F. H., Anti-Markovnikov alkene oxidation by metal-oxo–mediated enzyme catalysis. Science 2017, 358 (6360), 215-218.
    15. Singh, P.; Kumar, R.; Singh, A. K.; Yadav, P.; Khanna, R. S.; Vinayak, M.; Tewari, A. K., Synthesis and crystal structure of quinolinium salt: Assignment on nonsteroidal anti-inflammatory activity and DNA cleavage activity. Journal of Molecular Structure 2018, 1163, 262-269.
    16. Katritzky, A. R.; Semenzin, D.; Yang, B.; Pleynet, D. P. M., A novel synthesis of quinolinium salts via benzotriazole methodology. 1998, 35 (2), 467-470.
    17. Peshkov, V. A.; Pereshivko, O. P.; Van Der Eycken, E. V., A walk around the A3-coupling. Chemical Society Reviews 2012, 41 (10), 3790.
    18. Zhao, P.; Yan, X.; Yin, H.; Xi, C., Alkyltriflate-Triggered Annulation of Arylisothiocyanates and Alkynes Leading to Multiply Substituted Quinolines through Domino Electrophilic Activation. 2014, 16 (4), 1120-1123.
    19. Frisch, M.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. e., Gaussian∼ 09 Revision D. 01. 2014.
    20. Cheng, Q.; Xie, J.-H.; Weng, Y.-C.; You, S.-L., Pd-Catalyzed Dearomatization of Anthranils with Vinylcyclopropanes by [4+3] Cyclization Reaction. Angewandte Chemie International Edition 2019.
    21. Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G., Implicit self-consistent electrolyte model in plane-wave density-functional theory. The Journal of Chemical Physics 2019, 151 (23), 234101.
    22. Steinmann, S. N.; Sautet, P., Assessing a First-Principles Model of an Electrochemical Interface by Comparison with Experiment. The Journal of Physical Chemistry C 2016, 120 (10), 5619-5623.
    23. Zhang, H.; Goddard, W. A.; Lu, Q.; Cheng, M.-J., The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO2 reduction and hydrogen evolution. Physical Chemistry Chemical Physics 2018, 20 (4), 2549-2557.
    24. Tyrode, E.; Sengupta, S.; Sthoer, A., Identifying Eigen-like hydrated protons at negatively charged interfaces. Nature Communications 2020, 11 (1).
    25. Zundel, G.; Metzger, H., Energiebänder der tunnelnden überschuß-protonen in flüssigen säuren. Eine IR-spektroskopische untersuchung der natur der gruppierungen H5O2+. Zeitschrift für Physikalische Chemie 1968, 58 (5_6), 225-245.
    26. Eigen, M.; De Maeyer, L., Self-dissociation and protonic charge transport in water and. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1958, 247 (1251), 505-533.
    27. Headrick, J. M., Spectral Signatures of Hydrated Proton Vibrations in Water Clusters. Science 2005, 308 (5729), 1765-1769.
    28. Stoyanov, E. S.; Stoyanova, I. V.; Reed, C. A., The Structure of the Hydrogen Ion (H aq + ) in Water. 2010, 132 (5), 1484-1485.
    29. Fournier, J. A.; Johnson, C. J.; Wolke, C. T.; Weddle, G. H.; Wolk, A. B.; Johnson, M. A., Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. 2014, 344 (6187), 1009-1012.
    30. Thamer, M.; De Marco, L.; Ramasesha, K.; Mandal, A.; Tokmakoff, A., Ultrafast 2D IR spectroscopy of the excess proton in liquid water. 2015, 350 (6256), 78-82.
    31. Dryuk, V. G., The mechanism of epoxidation of olefins by peracids. 1976, 32 (23), 2855-2866.
    32. Liu, Y.; Deng, K.; Wang, S.; Xiao, M.; Han, D.; Meng, Y., A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. 2015, 6 (11), 2076-2083.
    33. Holm, R. H., Metal-centered oxygen atom transfer reactions. Chemical Reviews 1987, 87 (6), 1401-1449.
    34. Jirkovský, J. S.; Busch, M.; Ahlberg, E.; Panas, I.; Krtil, P., Switching on the Electrocatalytic Ethene Epoxidation on Nanocrystalline RuO 2. 2011, 133 (15), 5882-5892.
    35. De Visser, S. P.; Ogliaro, F.; Sharma, P. K.; Shaik, S., What Factors Affect the Regioselectivity of Oxidation by Cytochrome P450? A DFT Study of Allylic Hydroxylation and Double Bond Epoxidation in a Model Reaction. 2002, 124 (39), 11809-11826.
    36. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society 2015, 137 (13), 4347-4357.
    37. Hirao, H.; Kumar, D.; Thiel, W.; Shaik, S., Two states and two more in the mechanisms of hydroxylation and epoxidation by cytochrome P450. Journal of the American Chemical Society 2005, 127 (37), 13007-13018.
    38. Henkelman, G.; Jónsson, H., A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. The Journal of Chemical Physics 1999, 111 (15), 7010-7022.
    39. Heyden, A.; Bell, A. T.; Keil, F. J., Efficient methods for finding transition states in chemical reactions: Comparison of improved dimer method and partitioned rational function optimization method. The Journal of Chemical Physics 2005, 123 (22), 224101.
    40. Barchéchath, S. D.; Tawatao, R. I.; Corr, M.; Carson, D. A.; Cottam, H. B., Quinolinium salt as a potent inhibitor of lymphocyte apoptosis. 2005, 15 (7), 1785-1788.
    41. Wainwright, M.; Kristiansen, J. E., Quinoline and cyanine dyes—putative anti-MRSA drugs. International journal of antimicrobial agents 2003, 22 (5), 479-486.
    42. Kotani, H.; Ohkubo, K.; Fukuzumi, S., Formation of a long-lived electron-transfer state of a naphthalene–quinolinium ion dyad and the π-dimer radical cation. 2012, 155, 89-102.
    43. Ohkubo, K.; Fujimoto, A.; Fukuzumi, S., Photocatalytic Monofluorination of Benzene by Fluoride via Photoinduced Electron Transfer with 3-Cyano-1-methylquinolinium. 2013, 117 (41), 10719-10725.
    44. Krieg, R.; Eitner, A.; Halbhuber, K.-J., Tailoring and histochemical application of fluorescent homo-dimeric styryl dyes using frozen sections: From peroxidase substrates to new cytochemical probes for mast cells, keratin, cartilage and nucleic acids. Acta histochemica 2011, 113 (7), 682-702.
    45. Jayakumar, J.; Parthasarathy, K.; Cheng, C.-H., One-Pot Synthesis of Isoquinolinium Salts by Rhodium-Catalyzed CH Bond Activation: Application to the Total Synthesis of Oxychelerythrine. 2012, 51 (1), 197-200.
    46. Shchepina, N.; Avrorin, V.; Badun, G.; Alexandrova, G.; Agafonova, I.; Popova, N., Quinolinium Structure as Labeled Biomarkers. 2014, 03 (03), 21-26.
    47. Alonso, C.; Gonzalez, M.; Palacios, F.; Rubiales, G., Study of the Hetero-[4+2]-Cycloaddition Reaction of Aldimines and Alkynes. Synthesis of 1,5-naphthyridines and Isoindolone Derivatives. The Journal of Organic Chemistry 2017.
    48. Brandt, J. R.; Pospíšil, L.; Bednárová, L.; da Costa, R. C.; White, A. J.; Mori, T.; Teplý, F.; Fuchter, M. J., Intense redox-driven chiroptical switching with a 580 mV hysteresis actuated through reversible dimerization of an azoniahelicene. Chemical Communications 2017, 53 (65), 9059-9062.
    49. Jiang, K.-M.; Kang, J.-A.; Jin, Y.; Lin, J., Synthesis of substituted 4-hydroxyalkyl-quinoline derivatives by a three-component reaction using CuCl/AuCl as sequential catalysts. Organic Chemistry Frontiers 2018.
    50. Jesin, I.; Nandi, G. C., Recent Advances in the A3 Coupling Reactions and their Applications. European Journal of Organic Chemistry 2019, 2019 (16), 2704-2720.
    51. Cheng, L.-C.; Chen, W.-C.; Santhoshkumar, R.; Chao, T.-H.; Cheng, M.-J.; Cheng, C.-H., Synthesis of Quinolinium Salts from N -Substituted Anilines, Aldehydes, Alkynes, and Acids: Theoretical Understanding of the Mechanism and Regioselectivity. European Journal of Organic Chemistry 2020, 2020 (14), 2116-2129.
    52. Gómez-Ayala, S.; Castrillón, J. A.; Palma, A.; Leal, S. M.; Escobar, P.; Bahsas, A., Synthesis, structural elucidation and in vitro antiparasitic activity against Trypanosoma cruzi and Leishmania chagasi parasites of novel tetrahydro-1-benzazepine derivatives. 2010, 18 (13), 4721-4739.
    53. Miller, E. K.; Chung, K. Y.; Hutcheson, J. P.; Yates, D. A.; Smith, S. B.; Johnson, B. J., Zilpaterol hydrochloride alters abundance of -adrenergic receptors in bovine muscle cells but has little effect on de novo fatty acid biosynthesis in bovine subcutaneous adipose tissue explants. 2012, 90 (4), 1317-1327.
    54. Sinning, S.; Musgaard, M.; Jensen, M.; Severinsen, K.; Celik, L.; Koldso, H.; Meyer, T.; Bols, M.; Jensen, H. H.; Schiott, B.; Wiborg, O., Binding and Orientation of Tricyclic Antidepressants within the Central Substrate Site of the Human Serotonin Transporter. 2010, 285 (11), 8363-8374.
    55. Gheorghiade, M., Short-term Clinical Effects of Tolvaptan, an Oral Vasopressin Antagonist, in Patients Hospitalized for Heart Failure<SUBTITLE>The EVEREST Clinical Status Trials</SUBTITLE>. 2007, 297 (12), 1332.
    56. Singh, R. R.; Skaria, M.; Chen, L.-Y.; Cheng, M.-J.; Liu, R.-S., Gold-catalyzed (4+3)-annulations of 2-alkenyl-1-alkynylbenzenes with anthranils with alkyne-dependent chemoselectivity: skeletal rearrangement versus non-rearrangement. Chemical Science 2019.
    57. Bochevarov, A. D.; Harder, E.; Hughes, T. F.; Greenwood, J. R.; Braden, D. A.; Philipp, D. M.; Rinaldo, D.; Halls, M. D.; Zhang, J.; Friesner, R. A., Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry 2013, 113 (18), 2110-2142.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE