簡易檢索 / 詳目顯示

研究生: 葉蔚青
Yeh, Wei-Ching
論文名稱: 有限時間史特林引擎之最大功率分析
Maximum Power Output Analysis of Finite-Time Thermodynamics Stirling Engine
指導教授: 陳朝光
Chen, Cha'o-Kung
共同指導教授: 吳俊煌
Wu, Gien-Huang
賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 78
中文關鍵詞: 有限時間熱力學史特林循環基因演算法最大功率分析
外文關鍵詞: finite time thermodynamics, Stirling cycle, Genetic Algorithm, maximum power output analysis
相關次數: 點閱:120下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以有限時間熱力學觀點,研究不同狀況下之史特林引擎,並以基因演算法找出最大功率,並以此模擬太陽能史特林引擎之輸出功率。研究的主題包括內可逆史特林引擎,與考慮不完全回熱及熱漏效應之史特林引擎,並分別討論以對流熱傳形式當熱源與以輻射熱傳形式當熱源兩種狀況,找出最大輸出功率與熱效率之關係,以及此時工作流體最佳的工作溫度,其中對流熱傳形式存在解析解得以比較數值結果之準確性,結果顯示,在內可逆與考慮不完全回熱與熱漏之情況下以基因演算法找最大功率皆能得到十分準確的結果。此外,也可得到輻射熱傳模式下之結果,藉以近似太陽能史特林熱機,並討論各項參數對於最大輸出功率之影響(如:回熱過程時間、壓縮比、熱源溫度…)。
    最後模擬一太陽能熱發電系統,建立其集熱器之熱傳模型,並以內可逆史特林熱機作為引擎,研究不同太陽光輻射強度對於最大輸出功率之影響。

    This study present finite time thermodynamic analysis of Stirling heat engine and obtained the maximum power output by using Genetic Algorithm (GA). The thermodynamic models include an endoreversible Stirling engine and an irreversible Stirling engine with imperfect regeneration and heat loss. Each one of those models has two cases which respectively are heat source by convection transfer and by radiation transfer. The relationship between maximum power output and thermal efficiency, moreover, the optimum working temperature of working fluid can be obtained. The case of heat source by convection transfer shows the accuracy of this method by comparing with analytic solution. The second case is about heat source by radiation transfer. We simulated solar driven Stirling engines in the second case and analyzed the effects of various parameters on maximum power output (i.e., times of regeneration process, compression ratio, temperature of heat source…)
    In the last case, we have build a model of solar thermal power system, including heat transfer model of collector and endoreversible Stirling engine. The effects of various solar intensity on maximum power output have been discussed.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 符號說明 XI 第一章 緒論 1 1.1研究動機與背景 1 1.2 文獻回顧 3 1.3 本文架構 6 第二章 基因演算法 7 2.1 基因演算法基本概念 7 2.2 基因演算法的基本特徵 8 2.3 適應度 10 2.3.1 統一表達形式 10 2.4 基本基因演算法算子 11 2.4.1 選擇算子 11 2.4.2 交配算子 14 2.4.3 突變算子 16 2.5 終止條件 17 第三章 內可逆之史特林熱機最大功率分析 19 3.1理論模型 19 3.1.1 輸入熱流率為對流熱傳形式 19 3.1.2 輸入熱流率為輻射熱傳形式 21 3.2在最大功率下史特林引擎效率最佳化分析 23 3.2.1輸入熱流率為對流熱傳形式 23 3.2.2輸入熱流率為輻射熱傳形式 26 3.3結果與討論 26 3.3.1輸入熱流率為對流熱傳形式 26 3.3.2輸入熱流率為輻射熱傳形式 28 第四章 考慮熱漏與不完全回熱之史特林熱機最大功率分析 37 4.1理論模型 37 4.1.1 輸入熱流率為對流熱傳形式 37 4.1.2 輸入熱流率為輻射熱傳形式 41 4.2在最大功率下史特林引擎效率最佳化分析 44 4.2.1輸入熱流率為對流熱傳形式 44 4.2.2輸入熱流率為輻射熱傳形式 46 4.3結果與討論 47 4.3.1 熱傳模式為熱對流之結果 47 4.3.2 熱傳模式為輻射之結果 49 第五章 太陽能史特林熱發電系統最大功率分析 60 5.1理論模型 60 5.2最佳化 63 5.3結果與討論 64 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 73 參考文獻 75 自述 78

    [1] Novikov, Ι.I., “The Efficiency of Atomic Power Stations,” Journal of Nuclear Energy II ,Vol. 7, pp. 125-128 ,1958.
    [2] El-Wakil, M.M. , Nuclear Power Engineering, pp. 162-165 , Mcgraw-Hill, New York, 1962.
    [3] Curzon, F.L. and Ahlburn , B. , “Efficiency of Carnot Engine at Maximum Power Output,” American Journal of Physics, Vol. 43,No. 1,pp. 22-44 ,1975.
    [4] Rubin, M.H., Ondrechen, M.J. and Band, Y.B. ,“The Generalized Carnot Cycle a Working Fluid Operating in Finite Time between Finite Heat Sources and Sinks ,” Journal of Chemical Physics, Vol. 78,No. 7,pp. 4721-4727 ,1983.
    [5] Andresen B., Salamon, P. and Berry, R.s., “Thermodynamics in Finite Time”, Physics Today, Vol.37, No.9, pp. 62-70, 1984
    [6] Andresen B., Salamon, P. and Berry, R. S., “Thermodynamics of Finite Time: Extremals for Imperfect Heat Engines”, Journal of Chemical Physics, Vol.66, No. 4, PP. 1571-157,1977
    [7] De Vos, A., “Efficiency of Some Heat Engines at Maximum-Power Conditions,” American Journal of Physics, Vol. 53,No.6, pp. 570-573,1985.
    [8] Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants,” International Journal of Heat and Mass Transfer, Vol. 31, No. 6, pp. 1211-1219, 1988.
    [9] Angulo-Brown, F., “An Ecological Optimization Criterion for Finite-Time Heat Engines,” Journal of Applied Physics, Vol. 69,No. 11,pp. 7465-7469, 1991.
    [10] Ibrahim, O.M. ,Klein, S.A. ,and Mitchell, J.W. , “Optimum Power Cycles for Specified Boundary Conditions,” ASME Journal of Engineering for Gas Turbines and Power, Vol. 113, No. 4,pp. 514-521, 1991.
    [11] Gordon, J.M., “Generalized Power versus Efficiency Characteristics of Heat Engines: the Thermoelectric Generator as an Instructive Illustration,” American Journal of Physics, Vol. 59, No. 6,pp. 551-555, 1991.
    [12] Gordon, J.M. and Huleihil, M., “General Performance Characteristics of Real Heat Engine,” Journal of Applied Physics, Vol. 72, No. 3,pp. 829-837, 1992.
    [13] Bejan, A., “Power and Refrigeration Plants for Minimum Heat Exchanger Inventory,” ASME Journal of Energy Resources Technology, Vol. 115, No. 2, pp. 148-150, 1993.
    [14] Yan, Z. and Chen, J., “Optimal Performance of Endoreversible Cycles for Another Linear Heat Transfer Law,” Journal of Physics D: Applied Physics, Vol. 6, No.11, pp. 1581-1586, 1993.
    [15] Ait-Ali, M.A., “Maximum Power and Thermal Efficiency of an Irreversible Power Cycle,” Journal of Applied Physics, Vol. 78,No. 7,pp. 4314-4318, 1995.
    [16] Bejan, A., “Theory of Heat Transfer-Irreversible Power Plants-II. The Optimal Allocation of Heat Exchange Equipment” International Journal of Heat and Mass Transfer, Vol. 38, No. 3, pp. 433-444, 1995.
    [17] Moukalled, F., Nuwayhid, R.Y. and Nouehed, N., “The Efficiency of Endoreversible Heat Engines with Heat Leak,” International Journal of Energy Research, Vol. 19,No. 5,pp. 377-389, 1995.
    [18] Wu F., Chen L., Wu C., Sun F., “Optimum Performance of Irreversible Stirling Engine with Imperfect Regeneration”, Energy Convers. Mgmt, Vol. 39, No.8, pp. 727-732, 1998
    [19] Blank, D. and Wu C. “The optimal power output of an extra-terrestrial solar radiant Striling heat engine,” Energy, Vol.20 ,No.6, pp.523-530, 1995
    [20] Chen, J. , Yan, Z. , Chen, L. and Andresen, B. “Efficiency Bound of a Solar-Driven Stirling Heat engine System”, Int. J. Energy Res., Vol. 22,805-812,1998
    [21] Kaushik, S.C. and Kumar, S. “Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses”, Energy, Vol.25, 989-1003, 2000
    [22] Goktun, S. “Finite-Time Optimization of a Solar-Driven Heat Engine”, Solar Energy, Vol. 56, No.6, pp.617-620, 1996
    [23] Sahin, A.Z. “Optimum operating conditions of solar driven heat engines” , Energy Conversion & Management, Vol.41, 1335-1343, 2000
    [24] Koyun, A. “Performance analysis of a solar-driven heat engine with external irreversibilities under maximum power and power density condition” , Energy Conversion & Management, Vol.45, 1941-1947, 2004
    [25] Lu, J. , Ding, J. and Yang J. “Optimal Performance for Solar Thermal Power System” , Energy and Power Engineering, 110-115, 2009
    [26] 吳鋒, 陳林根, 孫豐瑞, 喻九陽 “斯特林基的有限時間熱力學優化” pp. 25-29 , 化學工業出版社, 2008

    [27] 鄭慶陽,“有限時間熱力學在熱力循環上之應用,” 國立成功大學機械工程研究所博士論文,1996.
    [28] 李宗乙,“遺傳算則之雙側逼近加權殘值法在工程上之應用,”國立成功大學機械工程研究所博士論文,2001
    [29] 李哲宇, “有限時間內可逆具共生熱之熱力循環系統之最大有用能率分析,”國立成功大學機械工程研究所碩士論文,2009

    下載圖示 校內:2011-07-26公開
    校外:2013-07-26公開
    QR CODE