| 研究生: |
張瑜芳 Zhang, Yu-Fang |
|---|---|
| 論文名稱: |
表面披覆二氧化鈦無鈷富鋰層狀正極材料之電化學性質 Electrochemical properties of TiO2-coated Cobalt free Lithium rich Layered Oxide Cathodes |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 無鈷 、富鋰 、TiO2披覆 、水熱法 、層狀正極材料 |
| 外文關鍵詞: | cobalt-free, Layer structure, Cathode material, TiO2 coating |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著電動車的發展及綠能政策的走向帶動了智慧電網與儲能裝置的需求,具有高能量密度的鋰離子電池成為了現在大眾所關注的要點。而在鋰離子電池系統中,正極材料除了要在電容量及工作電壓上扮演著重要角色,也大幅影響了成本,而現在為因應政策還得需思考環境友善的問題,在如此多方考量下,要開發出高能量密度的正極材料,是研究正極材料中十分重要的一環。而無鈷富鋰層狀正極材料(LMNO)具有低成本、環境友善等特性,且能量密度可高達1000Wh/kg,遠超越目前所有商用正極材料。然而,其卻因材料內部易引發不可逆的相轉變而使可用電容與平均電壓隨充放電循環迅速衰減,而較差的導電性也使無鈷富鋰正極材料無法應用於高速充放電循環中問題。
而為了解決上述問題,以發揮無鈷富鋰層狀正極材料的優點,本研究使用使用水熱法;一種簡單的濕式化學披覆的方式披覆TiO2-Bronze,藉由控制披覆濃度及後退火溫度的方式了解披覆TiO2-Bronze相的正極材料之電化學反應,而在後續對披覆過後的材料進行分析,可以發現TiO2-Bronze的披覆可以提高正極材料之電容量及在不同退火溫度下對過渡金屬析出的解決能力。
In recent decades, the growing demand for high energy density has intensified research interest in lithium-ion batteries (LIBs). Specifically cobalt-free lithium- and manganese-rich layered oxides (LMNOs) have high theoretical energy density (exceeding 1000 Wh/kg), low cost, and environmental benignity. However, LMNO, suffer from structural instability. This structural degradation results in severe voltage and capacity fading.In this study, LMNO cathode were synthesized via a carbonate co-precipitation method. For the first time, the electrochemical performance of LMNO coated with a TiO₂-bronze phase was systematically investigated. The results demonstrate that TiO₂-coated LMNO exhibits a significantly enhanced initial discharge capacity of 342.5 mAh/g, along with excellent capacity retention. After 100 cycles, the discharge capacity remains above 200 mAh/g, indicating the effectiveness of the TiO₂-bronze coating in mitigating capacity degradation and improving cycling stability.
[1] IEA(2023), "WorldEnergyOutlook2023."
[2] M. H. Jakob Fleischmann, Evan Horetsky, Dina Ibrahim, Sören Jautelat, Martin Linder, Patrick Schaufuss, Lukas Torscht, and and A. v. d. Rijt. (2023) Battery 2030:resilient,sustainable and circular. Available: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-and-circular#/
[3] P. M. Csernica et al., "Persistent and partially mobile oxygen vacancies in Li-rich layered oxides," Nature Energy, vol. 6, no. 6, pp. 642-652, Jun 2021
[4] S. J. Lu et al., "Single-Crystal Nickel-Based Cathodes: Fundamentals and Recent Advances," Electrochemical Energy Reviews, vol. 5, no. 4, Dec 2022, Art no. 15
[5] Z. Su et al., "Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices," (in English), Electrochemical Energy Reviews, Review vol. 3, no. 2, pp. 286-343, Jun 2020
[6] A. Urban, A. Abdellahi, S. Dacek, N. Artrith, and G. Ceder, "Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides," (in English), Phys. Rev. Lett., Article vol. 119, no. 17, p. 6, Oct 2017, Art no. 176402
[7] P. Nayak et al., "[Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries]," (in English), ADVANCED ENERGY MATERIALS, vol. 8, 2018-03-15 2018, Art no. 1702397
[8] 何冠廷、陳弘源、陳燦耀、方冠榮、張家欽. (2019, May) 儲能發展的勁旅─鋰離子電池. 科學發展. 61-65.
[9] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," (in English), Nature, Review vol. 414, no. 6861, pp. 359-367, Nov 2001
[10] M. S. Whittingham, "ROLE OF TERNARY PHASES IN CATHODE REACTIONS," (in English), Journal of the Electrochemical Society, Article vol. 123, no. 3, pp. 315-320, 1976
[11] M. S. Whittingham, "ELECTRICAL ENERGY-STORAGE AND INTERCALATION CHEMISTRY," (in English), Science, Article vol. 192, no. 4244, pp. 1126-1127, 1976
[12] H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, "On the challenge of developing advanced technologies for electrochemical energy storage and conversion," (in English), Materials Today, Article vol. 17, no. 3, pp. 110-121, Apr 2014
[13] E. S. Fan et al., "Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects," (in English), Chemical Reviews, Review vol. 120, no. 14, pp. 7020-7063, Jul 2020
[14] H. Cheng, J. G. Shapter, Y. Y. Li, and G. Gao, "Recent progress of advanced anode materials of lithium-ion batteries," (in English), J. Energy Chem., Review vol. 57, pp. 451-468, Jun 2021
[15] I. Nainville, A. Lemarchand, and J. P. Badiali, "Passivation of a lithium anode: A simulation model," (in English), Electrochim. Acta, vol. 41, no. 18, pp. 2855-2863, 1996
[16] B. Liang, Y. P. Liu, and Y. H. Xu, "Silicon-based materials as high capacity anodes for next generation lithium ion batteries," (in English), J. Power Sources, Review vol. 267, pp. 469-490, Dec 2014
[17] J. Lu, Z. W. Chen, F. Pan, Y. Cui, and K. Amine, "High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries," (in English), Electrochemical Energy Reviews, Review vol. 1, no. 1, pp. 35-53, Mar 2018
[18] Q. Wang, H. Wang, J. Wu, M. Zhou, W. Liu, and H. Zhou, "Advanced electrolyte design for stable lithium metal anode: From liquid to solid," (in English), Nano Energy, Review vol. 80, 2021-02-01 2021, Art no. 105516
[19] Y. Zhang et al., "Electrolyte Design for Lithium-Ion Batteries for Extreme Temperature Applications," (in English), Adv. Mater., Review vol. 36, 2023-12-27 2024
[20] Z. H. Lu et al., "Polyimide separators for rechargeable batteries," (in English), J. Energy Chem., Review vol. 58, pp. 170-197, Jul 2021
[21] X. R. Sun et al., "A review of electrospun separators for lithium-based batteries: Progress and application prospects," Carbon Energy, 2024 Apr 2024
[22] Y. Shao-Horn, L. Croguennec, C. Delmas, E. Nelson, and M. O'Keefe, "Atomic resolution of lithium ions in LiCoO<sub>2</sub>," (in English), Nat. Mater., Article vol. 2, pp. 464-467, 2003-07-01 2003
[23] S. Sharifi-Asl, J. Lu, K. Amine, and R. Shahbazian-Yassar, "Oxygen Release Degradation in Li-Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches," Advanced Energy Materials, vol. 9, no. 22, Jun 2019, Art no. 1900551
[24] F. Xiong, H. Yan, Y. Chen, B. Xu, J. Le, and C. Ouyang, "The Atomic and Electronic Structure Changes Upon Delithiation of LiCoO<sub>2</sub>: From First Principles Calculations," (in English), Int. J. Electrochem. Sci., Article vol. 7, pp. 9390-9400, 2012-10-01 2012
[25] J. Xie, N. Imanishi, A. Hirano, M. Matsumura, Y. Takeda, and O. Yamamoto, "Kinetics investigation of a preferential (104) plane oriented LiCoO<sub>2</sub> thin film prepared by RF magnetron sputtering," (in English), Solid State Ion., Article vol. 178, pp. 1218-1224, 2007-07-15 2007
[26] G. Blasse, "THE STRUCTURE OF SOME NEW MIXED METAL OXIDES CONTAINING LITHIUM(II)," (in English), Journal of Inorganic & Nuclear Chemistry, Note vol. 26, no. 8, pp. 1473-1474, 1964
[27] M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, "LITHIUM INSERTION INTO MANGANESE SPINELS," (in English), Mater. Res. Bull., vol. 18, no. 4, pp. 461-472, 1983
[28] M. M. Thackeray, L. A. Depicciotto, A. Dekock, P. J. Johnson, V. A. Nicholas, and K. T. Adendorff, "SPINEL ELECTRODES FOR LITHIUM BATTERIES - A REVIEW," (in English), J. Power Sources, vol. 21, no. 1, pp. 1-8, Aug 1987
[29] N. Pieczonka et al., "[Understanding Transition-Metal Dissolution Behavior in LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> High-Voltage Spinel for Lithium Ion Batteries]," (in English), J. Phys. Chem. C, vol. 117, pp. 15947-15957, 2013-08-08 2013
[30] X. B. Zhu et al., "High-Voltage Spinel Cathode Materials: Navigating the Structural Evolution for Lithium-Ion Batteries," (in English), Adv. Mater., Review; Early Access p. 28, 2024 May 2024
[31] T. F. Yi, J. Mei, and Y. R. Zhu, "Key strategies for enhancing the cycling stability and rate capacity of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> as high-voltage cathode materials for high power lithium-ion batteries," J. Power Sources, vol. 316, pp. 85-105, Jun 2016
[32] A. Manthiram, K. Chemelewski, and E. S. Lee, "A perspective on the high-voltage LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> spinel cathode for lithium-ion batteries," (in English), Energy Environ. Sci., vol. 7, no. 4, pp. 1339-1350, Apr 2014
[33] Y. Zhang, J. Alarco, M. Khosravi, and I. Mackinnon, "Nanoscale differentiation of surfaces and cores for olivine phosphate particles-a key characteristic of practical battery materials," (in English), J. Phys-Energy, Review vol. 3, 2021-07-01 2021, Art no. 032004
[34] A. Yamada et al., "Olivine-type cathodes achievements and problems," (in English), J. Power Sources, Article; Proceedings Paper vol. 119, pp. 232-238, 2003-06-01 2003
[35] M. ROSSOUW and M. THACKERAY, "LITHIUM MANGANESE OXIDES FROM LI2MN03 FOR RECHARGEABLE LITHIUM BATTERY APPLICATIONS," (in English), Mater. Res. Bull., Article vol. 26, pp. 463-473, 1991-06-01 1991
[36] E. Zhao, X. Yu, F. Wang, and H. Li, "High-capacity lithium-rich cathode oxides with multivalent cationic and anionic redox reactions for lithium ion batteries," (in English), Sci. China-Chem., Review vol. 60, pp. 1483-1493, 2017-12-01 2017
[37] J. Croy, M. Balasubramanian, K. Gallagher, and A. Burrell, "Review of the US Department of Energy's "Deep Dive" Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes," (in English), ACCOUNTS OF CHEMICAL RESEARCH, Review vol. 48, pp. 2813-2821, 2015-11-01 2015
[38] B. Wang et al., "Review on comprehending and enhancing the initial coulombic efficiency of Li-rich Mn-based cathode materials in lithium-ion batteries," (in English), Mat. Chem. Front., Review vol. 7, pp. 2570-2594, 2023-03-13 2023
[39] C. Wang and A. Manthiram, "Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes," (in English), J. Mater. Chem. A, Article vol. 1, pp. 10209-10217, 2013-01-01 2013
[40] F. Kong et al., "Conflicting Roles of Anion Doping on the Electrochemical Performance of Li-Ion Battery Cathode Materials," (in English), Chem. Mat., Article vol. 28, pp. 6942-6952, 2016-10-11 2016
[41] B. Qiu et al., "Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries," (in English), Nat. Commun., Article vol. 7, 2016-07-01 2016, Art no. 12108
[42] A. Appapillai, A. Mansour, J. Cho, and Y. Shao-Horn, "Microstructure of LiCoO<sub>2</sub> with and without "AIPO<sub>4</sub>" nanoparticle coating:: Combined STEM and XPS studies," Chem. Mat., vol. 19, pp. 5748-5757, 2007-11-13 2007
[43] I. Scott et al., "Ultrathin Coatings on Nano-LiCoO<sub>2</sub> for Li-Ion Vehicular Applications," (in English), Nano Lett., Article vol. 11, pp. 414-418, 2011-02-01 2011
[44] F. Ding et al., "Surface Heterostructure Induced by PrPO<sub>4</sub> Modification in Li<sub>1.2</sub> [Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>]O<sub>2</sub> Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay," (in English), ACS Appl. Mater. Interfaces, Article vol. 9, pp. 27936-27945, 2017-08-23 2017
[45] M. Z. Ge et al., "One-dimensional TiO<sub>2</sub> Nanotube Photocatalysts for Solar Water Splitting," (in English), Adv. Sci., Review vol. 4, no. 1, p. 31, Jan 2017, Art no. 1600152
[46] R. Singh and S. Dutta, "A review on H<sub>2</sub> production through photocatalytic reactions using TiO<sub>2</sub>/TiO<sub>2</sub>-assisted catalysts," (in English), Fuel, Review vol. 220, pp. 607-620, May 2018
[47] F. Wang, C. H. Yang, M. Duan, Y. Tang, and J. F. Zhu, "TiO<sub>2</sub> nanoparticle modified organ-like Ti<sub>3</sub>C<sub>2</sub> MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances," Biosensors & Bioelectronics, vol. 74, pp. 1022-1028, Dec 2015
[48] S. Jafari, B. Mahyad, H. Hashemzadeh, S. Janfaza, T. Gholikhani, and L. Tayebi, "Biomedical Applications of TiO<sub>2</sub> Nanostructures: Recent Advances," (in English), Int. J. Nanomed., Review vol. 15, pp. 3447-3470, 2020
[49] H. Z. Zhang and J. F. Banfield, "Structural Characteristics and Mechanical and Thermodynamic Properties of Nanocrystalline TiO<sub>2</sub>," Chemical Reviews, vol. 114, no. 19, pp. 9613-9644, Oct 2014
[50] H. L. Zhao, L. J. Liu, J. M. Andino, and Y. Li, "Bicrystalline TiO<sub>2</sub> with controllable anatase-brookite phase content for enhanced CO<sub>2</sub> photoreduction to fuels," (in English), J. Mater. Chem. A, Article vol. 1, no. 28, pp. 8209-8216, 2013
[51] W. C. Xu et al., "Synthesis of rutile-brookite TiO<sub>2</sub> by dealloying Ti-Cu amorphous alloy," (in English), Mater. Res. Bull., Article vol. 73, pp. 290-295, Jan 2016
[52] J. Pan and S. P. Jiang, "Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity," (in English), J. Colloid Interface Sci., Article vol. 469, pp. 25-30, May 2016
[53] Y. L. Zou et al., "Hydrothermal synthesis of Zn-doped brookite TiO<sub>2</sub> for enhanced visible-light-responsive photocatalytic performance," Materials Research Express, vol. 10, no. 8, Aug 2023, Art no. 085005
[54] X. L. Nie, S. P. Zhuo, G. Maeng, and K. Sohlberg, "Doping of TiO<sub>2</sub> Polymorphs for Altered Optical and Photocatalytic Properties," International Journal of Photoenergy, vol. 2009, 2009, Art no. 294042
[55] M. Abdel-Baki and F. Ei-Diasty, "Optical properties of oxide glasses containing transition metals: Case of titanium- and chromium-containing glasses," (in English), Curr. Opin. Solid State Mat. Sci., Review vol. 10, no. 5-6, pp. 217-229, Oct-Dec 2006
[56] Z. Yang et al., "Encapsulation of TiO<sub>2</sub>(B) nanowire cores into SnO<sub>2</sub>/carbon nanoparticle shells and their high performance in lithium storage," (in English), Nanoscale, Article vol. 3, pp. 4440-4447, 2011-01-01 2011
[57] J. He, J. G. Yang, J. Jiang, M. W. Xu, and Q. Wang, "Constructing reduced graphene oxide network aerogel supported TiO<sub>2</sub>(B) (Bronze phase TiO<sub>2</sub>) as anode material for lithium-ion storage," Journal of Alloys and Compounds, vol. 853, Feb 2021, Art no. 157330
[58] S. S. lineup. Available from: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.hitachi-hightech.com/file/ca/pdf/library/literature/SU8000FamilyBrochure.pdf
[59] 國立成功大學核心設施中心. Available from: https://cfc.ncku.edu.tw/
[60] 國立成功大學跨維綠能中心. Available from: http://higem.ncku.edu.tw/index.php?lang=cht
[61] 武漢市藍電電子股份有限公司. Available from: http://www.whland.com/
[62] H. Y. Li, J. Li, X. W. Ma, and J. R. Dahn, "Synthesis of Single Crystal LiNi<sub>0.6</sub>Mn<sub>0.2</sub>Co<sub>0.2</sub>O<sub>2</sub> with Enhanced Electrochemical Performance for Lithium Ion Batteries," Journal of the Electrochemical Society, vol. 165, no. 5, pp. A1038-A1045, 2018
[63] K. A. Jarvis, Z. Q. Deng, L. F. Allard, A. Manthiram, and P. J. Ferreira, "Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution," (in English), Chem. Mat., vol. 23, no. 16, pp. 3614-3621, Aug 2011
[64] D. Wang et al., "[Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation]," (in English), J. Power Sources, vol. 274, pp. 451-457, 2015-01-15 2015
[65] S. Hy, H. Liu, M. Zhang, D. Qian, B. Hwang, and Y. Meng, "[Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries]," (in English), Energy Environ. Sci., vol. 9, pp. 1931-1954, 2016-01-01 2016
[66] L. Li et al., "[Synthesis and electrochemical performance of cathode material Li<sub>1.2</sub>Co<sub>0.13</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub> from spent lithium-ion batteries]," (in English), J. Power Sources, vol. 249, pp. 28-34, 2014-03-01 2014
[67] M. E. Spahr, P. Novak, B. Schnyder, O. Haas, and R. Nesper, "Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials," (in English), Journal of the Electrochemical Society, vol. 145, no. 4, pp. 1113-1121, Apr 1998
[68] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni," (in English), Appl. Surf. Sci., vol. 257, no. 7, pp. 2717-2730, Jan 2011
[69] H. Nesbitt and D. Banerjee, "[Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO<sub>2</sub> precipitation]," (in English), Am. Miner., vol. 83, pp. 305-315, 1998-03-01 1998
[70] S. Chong, Y. Liu, W. Yan, and Y. Chen, "[Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li<sub>1.2</sub>Ni<sub>x</sub>Mn<sub>0.8-x</sub>O<sub>2</sub> cathode materials for lithium-ion batteries]," (in English), RSC Adv., vol. 6, pp. 53662-53668, 2016-01-01 2016
[71] A. N. Mansour, "Characterization of LiNiO2 by XPS," Surface Science Spectra, vol. 3, no. 3, pp. 279-286, 1994
[72] L. PONT, A. SIEDLE, M. LAZARUS, and W. JOLLY, "[X-RAY PHOTOELECTRON-SPECTROSCOPY OF SOME NICKEL COMPOUNDS]," (in English), Inorg. Chem., vol. 13, pp. 483-483, 1974-01-01 1974
[73] X. Li, G. Wu, X. Liu, W. Li, and M. Li, "Orderly integration of porous TiO<sub>2</sub>(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries," (in English), Nano Energy, Article vol. 31, pp. 1-8, 2017-01-01 2017
[74] S. Fleischmann et al., "Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials," (in English), CHEMICAL REVIEWS, Review vol. 120, pp. 6738-6782, 2020-07-22 2020
[75] I. T. Chashechnikova, V. M. Vorotyntsev, V. V. Borovik, G. I. Golodets, I. V. Plyuto, and A. P. Shpak, "Strong metal-carrier interaction in cobalt- and nickel-titanium dioxide co-hydrogenation catalysts," Theoretical and Experimental Chemistry, vol. 28, no. 3, pp. 176-178, 1993/05/01 1993
[76] H. Nesbitt, D. Legrand, and G. Bancroft, "Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators," (in English), Phys. Chem. Miner., Article vol. 27, pp. 357-366, 2000-05-01 2000
[77] Y. Xiang et al., "Improved Electrochemical Performance of 0.5Li<sub>2</sub>MnO<sub>3</sub>•0.5LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> Cathode Materials for Lithium Ion Batteries Synthesized by Ionic-Liquid-Assisted Hydrothermal Method," (in English), Front. Chem., Article vol. 8, 2020-11-23 2020, Art no. 729
[78] J. Zheng et al., "Electrochemical Kinetics and Performance of Layered Composite Cathode Material Li[Li<sub>0.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>]O<sub>2</sub>," (in English), JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Article vol. 160, pp. A2212-A2219, 2013-01-01 2013
校內:2030-07-23公開