簡易檢索 / 詳目顯示

研究生: 陳詣奇
Chen, I-Chi
論文名稱: 吸附原子在陳絕緣體的非平衡態動力學
Non-equilibrium dynamics of adatom impurity coupling with Chern insulator
指導教授: 張為民
Zhang, Wei-Min
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 37
中文關鍵詞: Haldane模型非平衡態動力學雜質
外文關鍵詞: Haldane model, non-equilibrium dynamics, impurity
相關次數: 點閱:80下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用非平衡的格林函數技術的主方程,我們研究了Chern拓撲絕緣體中吸附原子雜質態的動力學。 我們研究了Chern拓撲絕緣體中吸附原子質態的動力學。
    在這裡,我們考慮Haldane模型 是沒有外部磁場的Chern絕緣子模型,在費米能階。 由於無間隙譜能普密度,與初始雜質態將消散到Haldane模型上; 反之,非馬爾可夫動力學出現在雜質態耦合大塊石墨烯或沒有拓樸的一般絕緣體。 此外,我們可以利用雜質態的耗散和波動來探索相圖,以區分普通絕緣體和Chern絕緣體。 結果,我們發現了一些關於雜質非平衡動力學的有趣現象。

    Using the master equation based on the non-equilibrium Green function technique[1],
    we investigate the dynamics of adatom impurity state in Chern topological insulator.
    we investigate the dynamics of adatom impurity state in Chern topological insulator.
    Here we consider the Haldane model[2] as the one of Chern insulator model without the external magnetic field. At Fermi level, the initial impurity state coupling with the edge of non-trivial topological ribbon Haldane model will dissipate to the Haldane model because of gapless spectrum density; whereas the non-Markovian dynamics appears when the impurity state coupling the bulk Haldane model or normal insulator. Moreover, we can use the dissipation and fluctuation of impurity state to explore the phase diagram to differ normal insulator and Chern insulator. In turn, we find out some interesting phenomena about the non-equilibrium dynamics of impurity.

    Contents Abstract ii Chinese abstract iii Acknowledgements iv Contents v List of Figures vi 1 Introduction 1 1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Topological material and Haldane model 4 2.1 Berry phase and Bloch theorem . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Dirac Hamiltonian and Chern insulator . . . . . . . . . . . . . . . . . . . 7 2.2.1 Chern number and Chern insulator . . . . . . . . . . . . . . . . . . 7 2.2.2 Dirac equation and corresponding edge state . . . . . . . . . . . . 8 2.3 Haldane model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Non equilibrium dynamics of adatom coupling with Haldane model 12 3.1 The Haldane model coupling with impurity . . . . . . . . . . . . . . . . . 12 3.2 Dynamics of impurity state . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Result and analysis 21 4.1 Dissipation dynamics and fluctuation dynamics of impurity state . . . . . 21 4.2 Corresponding phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Conclusion and outlook 34 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Bibliography 36

    [1] L. V. Keldysh.Sov. Phys. JETP, 20(4):1018–1026, 1965.[2] F. D. M. Haldane.Phys. Rev. Lett.,61, 2015 (1988).[3] M. Z. Hasan and C. L. Kane.Rev. Mod. Phys,82, 3045 (2010).[4] M. R. Galpin and D. E. Logan.Phys. Rev. B,77, 195108 (2008).[5] P. W. Anderson.Phys. Rev. Lett,124, 41 (1961).[6] L. Yu.Acta. Phys. sin,21, 75 (1965).[7] H. Shiba.Prog. Theor. Phys.,40, 435 (1968).[8] A. V. Balatsky, M. I. Salkola, and A. Rosengren.Phys. Rev. B,51, 15547 (1994).[9] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J.M. Taylor.Nature Photonics,7,1001 (2013).[10] M. Wimmer, A. R. Akhmerov, and F. Guinea.Phys. Rev. B,77, 045409 (2010).[11] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, andE. Tilman.Nature,515, June 237 (2014).[12] I. Vega and D. Alonso.Rev Mod phys,89, 015001 (2017).[13] M. V Berry.Proc. R. Soc. London, Ser. A,392, 45 (1984).[14] D. Xiao, M. C. Chang, and Q. Niu.Rev. Mod. Phys,82, 1959 (2010).[15] F. Bloch.Physik,52, 555 600 (1929).[16] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs.Phys. Rev. Lett.,49, 405 (1982).[17] C. L. Kane and E. J. Mele.Phys. Rev. Lett.,95, 146802 (2005).[18] C. L. Kane and E. J. Mele.Phys. Rev. Lett.,95, 226801 (2005).36
    BIBLIOGRAPHY37[19] L. Fu and C. L. Kane.Phys. Rev. B.,74, 195312 (2006).[20] D. N. Sheng, Z. Y. Weng, and F. D. M. Haldane.Phys. Rev. Lett.,97, 036808(2006).[21] R. B. Laughlin.Phys. Rev. B,23, 5632 (1981).[22] R. Jackiw and C. Rebbi.Phys. Rev. D,13, 3398 (1976).[23] T. O.. Wehling, M. I. Katsnelson, and A. I. Lichtenstei.Phys. Rev. B,30, 085428(2009).[24] M. W. Y. Tu and Zhang W. M.Phys. Rev. B,78, 235311 (2008).[25] J. S. Jin, Matisse. W. Y. Tu, W. M. Zhang, and Y. Yan.New J. Phys.,12, 083013(2010).[26] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. W. Y. Tu, and F. Nori.Phys. Rev. Lett.,109, 170402 (2012).[27] Matisse. W. Y. Tu, J. S. Zhang, W. M. Jin, O. Entin-Wohlman, and A. Aharony.Phys. Rev. B.,86, 115453 (2012).[28] E. F. Dyson.Phys. Rev.,75, 1736 (1949).[29] J. S. Schwinger.Proc. Nat. Acad. Sc.,37, 452 (1951).[30] P.Y. Lo, H.N. Xiong, and W.M. Zhang.Scientific Reports,5:9423–, 9423 (2015).[31] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu.Phys. Rev. X.,1, 021001 (2011).[32] M. Kong, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L.Qi, and S. C. Zhang.Science,318, 776 (2007).[33] J. Eistert, M. Friesdorf, and C. Gogolin.Nature phys,11, 124 (2015).

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE