| 研究生: |
洪士評 Hung, Shih-Ping |
|---|---|
| 論文名稱: |
丙烷自發熱重組於多孔性介質-觸媒混合床之產氫特性研究 Characteristics of the Hydrogen Production from Propane of Autothermal Reforming in Porous Media-Catalyst Hybrid Reformer |
| 指導教授: |
王振源
Wang, Chen-Yuan 賴維祥 Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 丙烷 、多孔性介質 、自發熱重組法 、合成氣 |
| 外文關鍵詞: | Propane, Porous Media, Autothermal Reforming, Syngas |
| 相關次數: | 點閱:112 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為使用丙烷進行自發熱重組產出合成氣,利用多孔性介質觸媒混合床進行重組反應,其中Pt/Al2O3觸媒放置於碳化矽多孔性介質之間。操作參數包括丙烷流率為1-4 L/min,O2/C為0.5-0.7,S/C為0-1。實驗先針對丙烷部分氧化法找出最佳重組濃度,研究結果發現,丙烷流率3 L/min,O2/C=0.55,Case A-30 PPI反應室溫度約800 0C,雖然較Case B-65 PPI低200 0C,但其H2濃度28.54 %與CO濃度21.88 %,皆高於Case B的H2濃度24.65 %與CO濃度19.74 %,顯示在Case A,丙烷流率3 NL/min,O2/C=0.55,有最佳的合成氣濃度。
加入水汽進行丙烷自發熱重組,隨著S/C=0-1的增加,反應室上游溫度由800 0C降至300 0C,但反應室下游溫度皆無太大差異。而隨著S/C=0-1的增加,反應室下游的水氣轉移觸媒,有助於提高H2濃度與降低CO濃度,與S/C=0相比,S/C=1的H2濃度由27.41 %上升至30.11 %,CO濃度由20.59 %降至12.46 %。反應室的性能比較上,在Case A,丙烷流率3 L/min,丙烷轉化率隨O2/C比降低而遞減。在S/C=0時,丙烷轉化率皆最高,而隨著S/C增加,丙烷轉化率隨之下降。在O2/C=0.7,S/C=0~0.75時,丙烷轉化率皆可達100 %。氫氣產率最高可達100 %,熱效率在O2/C=0.55,S/C=0時最高可達81.87 %。氫氣流率在O2/C=0.65, S/C=1時,最高為15.18 NL/min,輸出功率為2.46 kW。
The porous media and catalytic packed bed were utilized to reform propane into syngas, and the Pt/Al2O3 catalyst is located between two porous media silicon carbide. The experiment of the partial oxidation of propane is performed to find the optimal reforming of concentration. The results show that the reaction temperature of Case A-30 PPI is relatively lower than that of Case B-65 PPI, but the concentrations of CO and H2 for Case A are higher than that for Case B. In the case of propane flow rate of 3 L/min, O2/C=0.55, Case A-30 PPI reaction chamber temperature is about 800 0C, which is lower 200 0C comparing to Case B-65 PPI. However, the concentration of H2 and CO are 28.54 % and 21.88 % respectively in Case A, which are higher than those of 24.65 % and 19.74 % in Case B respectively.
Adding steam to propane of autothermal reforming, with S/C increase from 0 to 1. Compared with S/C=0, S/C=1 in H2 concentration slightly increased from 27.41% to 30.11%, CO concentration from 20.59% down to 12.46 %. In the case of O2/C=0.7, S/C=0-0.75, the conversion efficiency of propane were up to 100 %. The yield of hydrogen can reach to 100 %. The thermal efficiency can reach to 81.87 % in O2/C=0.55, S/C =0. Hydrogen flow rate can be up to 15.18 L/min as O2/C=0.65, the S/C =1, and the output power of 2.46 kW.
[1] C. Miiller, P. Goedtke, U. Papenburg, J. Adler, Standke, G. Standke, H. Heymer, W. Tauscher, F. Jansen, “Innovative ceramic materials for porous medium burners,” Interceram:International Ceramic Review, Vol. 48, 1999, pp.326-331.
[2] Z. Al-Hamamre, A. Al-Zoubi, “The Use of Inert Porous Media Based Reactors for Hydrogen Production,” Int. J. Hydrogen Energy, Vol. 35, 2010, pp.1971-1986.
[3] S. R. Khatami, B. Safavisohi, E. Sharbati, “Porosity and permeability effects, on centerline temperature distributions, peak flame temperature, flame structure, and preheating mechanism for combustion in porous media,” Energy Resources Technology, Vol. 129, 2007, pp.54-65.
[4] S. Afsharvahid, P. J. Ashman, B. B. Dally, “Investigation of NOx conversion characteristics in a porous medium,” Combust. Flame, Vol. 152, 2008, pp.604-615.
[5] Z. Al-Hamamrea, S. Voß, D. Trimis, “Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer,” Int. J. Hydrogen Energy, Vol. 34, 2009, pp. 827-832.
[6] D. J. Diamantis, E. Mastorakos, D. A. Goussis, “Simulations of premixed combustion in porous media,” Combustion Theory and Modelling, Vol. 6, 2002, pp.383-41.
[7] T. L. Marbach, A. K. Agrawal, “Experimental study of surface and interior combustion using composite porous inert media,” Journal of Engineering for Gas Turbines and Power, Vol. 127, 2005, pp.307-313.
[8] M.A. Muieebu, M.Z. Abdullah, M.Z. Abu Bakar, A.A. Mohamad, M.K. Abdullah, “Applications of porous media combustion technology – A review,” Applied Energy, Vol. 86, 2009, pp.1365-1375.
[9] R. S. Dhamrat, J. L. Ellzey, “Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor,” Combust. Flame, Vol. 144, 2006, pp.698–709.
[10] M. G. Sobaccha, A. V. Saveliev, A. A. Fridman, L.A. Kennedy, S.
Ahmed, T. Krause, “Experimental assessment of a combined plasma-catalytic system for hydrogen production via partial oxidation of hydrocarbon fuels,” Int. J. Hydrogen Energy, Vol. 27, 2002, pp.635 – 642.
[11] J. Zhu, D. Zhang, K. D. King, “Reforming of CH4 by partial oxidation thermodynamic and kinetic analyses”, Fuel, Vol. 80, 2001, pp.899-905.
[12] S. H. Chan, H. M. Wang, “Thermodynamic analysis of natural-gas fuel processing for fuel Cell applications,” Int. J. Hydrogen Energy, Vol. 25, 2000, pp.441-449.
[13] Y. S. Seo, A. Shirley, S. T. Kolaczkowski, “Evaluation of thermodynamically favorable operating conditions for production of hydrogen in three different reforming technologies,” J. Power Sources, Vol. 108, 2002, pp.213–225.
[14] A. E. Lutz, R. W. Bradshaw, L. Bromberg, A. Rabinovich,“Thermodynamic analysis of hydrogen production by partial oxidation reforming,” Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 809–816.
[15] L. S. F. Wagner, C. D. Lidia, S. Martin, “Experimental and numerical conversion of liquid heptane to syngas through combustion in porous media,” Combust. Flame, Vol. 154, 2008, pp. 217–231.
[16] A. E. Lutz, R. W. Bradshaw, J. O. Keller, D. E. Witmer,“Thermodynamic analysis of hydrogen production by steam reforming,” Int. J. Hydrogen Energy, Vol. 28, 2003, pp.159 – 167.
[17] D. L. Hoang, S. H. Chan, “Modeling of a catalytic autothermal
methane reformer for fuel Cell applications,” Appl. Catal. A- Gen , Vol. 268, 2004, pp.207–216.
[18] F. Joensen, J. R. R. Nielsen, “Conversion of hydrocarbons and alcohols for fuel Cell,” J. Power Sources, Vol. 105, 2002, pp.195–201.
[19] S. Ahmed, M. Krumpelt, “Hydrogen from hydrocarbon fuels for fuel Cells,” Int. J. Hydrogen Energy, Vol. 26, 2001, pp.291–301.
[20] V. Recupero, L. Pino, R. D. Leonardo, M. Lagana, G. Maggio,“Hydrogen generator via catalytic partical oxidation of methane for fuel Cell,” J. Power Sources, Vol. 71, 1998, pp.208–214.
[21] A. K. Avcı, Z. I. Önsan, D. L. Trimm, “On-board fuel conversion for hydrogen fuel Cells comparison of different fuels by computer
simulations,” Appl. Catal. A-Gen , Vol. 216, 2001, pp.243–256.
[22] P. Beckhaus , A. Heinzel , J. Mathiak , J. Roes, “Dynamics of H2
production by steam reforming,” J. Power Sources, Vol. 127, 2004,
pp.294–299.
[23] S. Ayabe, H. Omoto, T. Utaka, R. Kikuchi, K. Sasaki, Y. Teraoka, K.Eguchi, “Catalytic autothermal reforming of methane and propane over supported metal catalysts,” Appl. Catal. A-Gen , Vol. 241, 2003, pp.261–269.
[24] L. Ma, D. L. Trimm, C. Jiang, “The design and testing of an
autothermal reactor for the conversion of light hydrocarbons to
hydrogen,” Appl. Catal. A-Gen , Vol. 138, 1996, pp.275–283.
[25] D. J. Liu, T. D. Kaun, H. K. Liao, S. Ahmed, “Characterization of
kilowatt-scale autothermal reformer for production of hydrogen from heavy hydrocarbons,” Int. J. Hydrogen Energy, Vol. 29, 2004, pp.1035 – 1046.
[26] F. Cipit`ı, V. Recupero, L. Pino, A. Vita, M. Lagana, “Experimental
analysis of a 2 kW LPG-based fuel processor for polymer electrolyte fuel Cells,” J. Power Sources, Vol. 157, 2006, pp.914–920.
[27] Y. T. Seo, D. J. Seo, J. H. Jeong, W. L. Yoon, “Design of an integrated fuel processor for residential PEMFCs applications,” J. Power Sources ,Vol. 160, 2006, pp.505–509.
[28] A. Beretta, P. Forzatti, “Partial oxidation of light paraffins to synthesis gas in short contact-time reactors,” Chem. Eng. J., Vol. 99, 2004, pp.219-226.
[29] B. Silberova, H. J. Venvik, A. Holmen, “Production of hydrogen by short contact time partial oxidation and oxidative steam reforming of propane,” Catal. Today, Vol. 99, 2005, pp.69–76.
[30] C. Song, W. Pan, “Tri-reforming of methane a novel concept for
catalytic production of industrially useful synthesis gas with desired H2/CO ratios,” Catal. Today, Vol. 98, 2004, pp.463–484.
[31] L. S. F. Wagner, C. D. Lidia, S. Martin, “Autothermal reforming of propane for hydrogen production over Pd/CeO2/Al2O3 catalysts,” Appl. Catal. B-Environ, Vol. 85, 2008, pp.77–85.
[32] S. Lee, G. Keskar, C. Liu, W. R. Schwartz, C. S. Mcenally, J. Kim, L. D. Pfefferle, G. L. Haller, “Deactivation characteristics of Ni/CeO2-Al2O3 catalyst for cyclic regeneration in a portable steam reformer,” Appl. Catal. B-Environ, Vol. 111-112, 2012, pp.157–164.
[33] V. Modafferi, G. Panzera, V. Baglio, F. Frusteri, P. L. Antonucci, “Propane reforming on Ni–Ru/GDC catalyst: H2 production for IT-SOFCs under SR and ATR conditions,” Appl. Catal. A-Gen, Vol. 334, 2008, pp.1–9.
[34] M. Boaro, V. Modafferi, A. Pappacena, J. Llorca, V. Baglio, F. Frusteri, P. Frontera, A. Trovarelli, P. L. Antonucci, “Comparison between Ni–Rh/gadolinia doped ceria catalysts in reforming of propane for anode implementations in intermediate solid oxide fuel cells,” J. Power Sources , Vol. 195, 2010, pp.649–661.
[35] R. Dietrich, J. Oelze, A. Lindermeir, C. Spitta, M. Steffen, T. Kuster, S. Chen, C. Schlitzberger, R. Leithner, “Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle–Results for a small scale propane driven unit,” J. Power Sources , Vol. 196, 2011, pp.7152–7160.
[36] S. Barison, M. Battagliarin, S. Daolio, M. Fabrizio, E. Miorin, P. L. Antonucci, S. Candamano, V. Modafferi, E. M. Bauer, C. Bellitto, G. Righini, “Novel Au/La1−xSrxMnO3 and Au/La1−xSrxCrO3 composites: Catalytic activity for propane partial oxidation and reforming,” Solid State Ionics , Vol. 177, 2007, pp.3473–3484.
[37] V. Recupero, L. Pino, A. Vita, F. Cipiti, M. Cordaro, M. Lagana, “Development of a LPG fuel processor for PEFC systems:Laboratory scale evaluation of autothermal reforming and preferential oxidation subunits,” Int. J. Hydrogen Energy , Vol. 30, 2005, pp.963–971.
[38] X. Wang, N. Wang, J. Zhao, L. Wang, “Thermodynamic analysis of propane dry and steam reforming for synthesis gas or hydrogen production,” Int. J. Hydrogen Energy , Vol. 35, 2010, pp.12800–12807.
[39] A. Donazzi, D. Livio, C. Diehm, A. Beretta, G. Groppi, P. Forzatti, “Effect of pressure in the autothermal catalytic partial oxidation of CH4 and C3H8: Spatially resolved temperature and composition profiles,” Appl. Catal. A-Gen, Vol. 469, 2014, pp.52–64.
[40] W.H. Chen, M.R. Lin, J.J. Lu, Y. Chao, T.S. Leu ,“Thermodynamic analysis of hydrogen production from methane via autothermal reforming and partial oxidation followed by water gas shift reaction,” Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 11787–11797.