簡易檢索 / 詳目顯示

研究生: 林忠詮
Lin, Chung-Chuan
論文名稱: 透孔盤尾流與大氣邊界層交互作用
Interaction between Porous Disc Wake and Atmospheric Boundary Layer
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 141
中文關鍵詞: 風洞實驗大氣邊界層透孔盤紊流熱線測速推力係數紊流尺度
外文關鍵詞: Wind tunnel, Atmospheric boundary layer, Actuator disc, Turbulence, Hot-wire anemometer
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過風洞實驗,針對透孔率50%之透孔盤模型於均勻流與邊界層流中進行尾流逐點量測,透過改變模型與來流之偏向角,分析其速度分布、紊流強度、動量通量、紊流積分尺度等氣動力特性,利用所量測之風速去計算簡化後之紊流動量方程式中各項之值,並探討在不同邊界層厚度與透孔盤模型寬度比例(δ⁄D=4.5與3)所造成之尾流特性及發展情況,兩種透孔盤模型可視為模擬葉面直徑66.7公尺和100公尺的風機於大氣邊界層下之實驗結果,並將這些結果與均勻來流情況做比較。
    本研究量測與計算在均勻來流環境中且模型正向於來流時之推力係數,驗證動量理論及圓盤理論所計算之推力係數與六力平衡儀所量測結果之差異。利用圓盤理論取尾流最高平均速度降所計算之推力係數為0.678,動量理論所計算之推力係數為0.645,而六力平衡儀所量測之推力係數為0.596。表示透過量測尾流風速剖面利用動量理論去計算透孔盤模型推力是可行的,但是量測尾流剖面最低平均速度利用圓盤理論去計算透孔盤模型推力的誤差會較大。
    本研究探討在不同邊界層厚度與透孔盤模型寬度比例(δ⁄D=4.5與3)所造成之尾流特性及發展情況,分析尾流的氣動力特徵分布發現邊界層效應對風機尾流的影響很大,對於後方尾流內外動量的混合與損失速度的回復有極大的幫助。觀察透孔盤模型尾流無因次速度降水平分布,在δ⁄D=4.5與3時的尾流最高無因次速度降低量分別為0.35與0.38,代表δ⁄D越大會使速度降低量越少,又由於模型的推力係數與尾流速度降成正比,表示在模型δ⁄D越大的情況下相同透孔率的模型推力係數會越低,另外在均勻來流實驗下空氣流過模型後的最高無因次速度降低量為0.46,證明邊界層效應會降低模型尾流的速度降低量。
    透過改變模型與來流之偏向角,發現在均勻流環境下不同偏向角時的尾流寬度完全由透孔盤模型的投影寬度來決定,尾流的寬度會隨著下游距離而線性增加,在X/D=1與4時,尾流寬度約為1.14倍與1.19倍的透孔盤投影寬度。在邊界層來流的環境下,尾流的寬度也會隨著下游距離而線性增加,但偏向角的上升也會使尾流寬度下降,與均勻來流時的實驗結果不一樣,不同偏向角時的無因次尾流寬度並沒有完全一致,尾流寬度而是與模型的偏向角成正相關,偏向角越大尾流寬度也越大。
    由模型中心對稱軸(Y=0)之正後方尾流的速度分布,可以計算出紊流動量方程式中各項之值,發現在邊界層環境下主導尾流動量傳遞的項為U ∂U/∂x與-∂/∂z ((u^' w^' ) ̅ ),相較之下其他項之值都很小,尤其是黏滯應力項幾乎沒有影響力,表示平均流向速度之改變(U ∂U/∂x)主要是受動量通量之縱向改變(∂/∂z ((u^' w^' ) ̅ ))所影響。

    The problem of the interaction between atmospheric boundary layer and wind turbine wakes arises with the development of offshore wind farms. Compared to the inflow, wind turbine wake has lower velocity and higher turbulence intensity, it make the power production decreasing and the fatigue loading increasing. The porous disks, based on the concept of the actuator disk theory, are employed for studying the characteristics of wind turbine wake some distance downstream. This paper examines experimentally the wake characteristics of a porosity 50% porous disc model in a uniform free stream and turbulent boundary layers. Hot-wire velocity measurements were carried out in the wake region. This paper also use force balance to measure thrust of the model. The results show the wake with higher ratio of boundary layer thickness and porous disc diameter have lower velocity deficit, added turbulence intensity and distance to recovery. The thrust coefficient of porous disc model obtained by actuator disc theory, momentum theory, and force balance respectively are 0.678, 0.645, and 0.596. U ∂U/∂x, W ∂U/∂z and -∂/∂z ((u^' w^' ) ̅ ) are the main factor to influence wake momentum transfer in vertical distribution.

    摘要 I 致謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 符號說明 XXIV 第壹章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-3-1 大氣邊界層特性與成因 3 1-3-2 風力發電機尾流 4 1-3-3 透孔盤模型尾流 7 1-3-4 大氣邊界層的紊流特性 9 1-3-5 尾流與大氣邊界層交互作用 10 1-3-6 風洞模擬的大氣邊界層 11 第貳章 實驗設備與規劃 13 2-1 開放式低速風洞 13 2-2 環境風洞與實驗設備內政部建研所環境風洞 13 2-3 轉子式風速計 14 2-4 手提式壓力校正器(Portable pressure calibration) 14 2-5 皮托管及壓力感測器 15 2-6 熱線探針與熱線測速儀 15 2-7 資料擷取系統 16 2-8 透孔盤模型 17 2-9 六力平衡儀 18 2-10 量測與取樣條件 18 第參章 分析方法與理論 21 3-1 大氣邊界層垂直風速分布 21 3-2 尾流速度與紊流特性 23 3-2-1 尾流場速度分布之不均勻度 24 3-2-2 紊流強度與積分時間尺度 26 3-3 圓盤理論(actuator disc theorem) 28 3-4 動量理論(momentum theorem) 29 3-5 紊流動量方程式 29 第肆章 結果與討論 32 4-1 風洞環境量測 32 4-1-1 開放式低速風洞 32 4-1-2 內政部建研所環境風洞 32 4-2 模型A於風洞A的尾流分析 35 4-2-1 尾流平均風速不均勻度 35 4-2-2 尾流平均風速與紊流強度 35 4-2-3 尾流動量通量與紊流積分尺 39 4-2-4 推力係數 42 4-2-5 紊流動量方程式 44 4-3 模型A與模型B於風洞B的尾流分析 45 4-3-1 尾流平均風速不均勻度 45 4-3-2 尾流平均風速與紊流強度 46 4-3-3 尾流動量通量與紊流積分尺度 51 4-3-4 紊流動量方程式 53 第伍章 結論與未來建議 55 5-1 結論 55 5-2 未來建議 62 第陸章 參考文獻 64 第柒章 附錄 69 7-1 表格 69 7-2 圖片 73

    [1] Sawyer, S. & Rave, K. "Global wind 2010 report." , GWEC, (2010)
    [2] 中央大學大氣科學系,"台灣風能資料庫", 臺灣風能實驗室網頁, http://www.atm.ncu.edu.tw/93/wind/, (2013)
    [3] 經濟部能源局, "年能源產業白皮書", 經濟部能源局, (2012)
    [4] 馬利艷,"離岸風力發電產業之機會與挑戰", 中華民國機械工業期刊, 319 期, 4-416頁, (2009)
    [5] 經濟部能源局,"風力發電離岸系統示範獎勵辦法", 經濟部能源局, 台灣, (2012)
    [6] Robert, W. F., Pritchard, P. J. and Alan, T. M., "Introduction to fluid mechanics", John Wiley & Sons (Asia) Pte Ltd, (2010)
    [7] Castellani, F. and Vignaroli, A., "An application of the actuator disc model for wind turbine wakes calculations", Applied Energy, vol. 101, no. C, p.432–440, (2013)
    [8] Garratt, J. R. "The atmospheric boundary layer.", Cambridge university press, (1994)
    [9] Holton, J. R. & Hakim, G. J. "An introduction to dynamic meteorology.", Academic press, (2012)
    [10] Stull, R.B. "An introduction to boundary layer meteorology." Springer, Vol.13, (1988)
    [11] International Electrotechnical Commission. "IEC 61400-3 Design requirements for offshore wind turbines. ", IEC international standards, (2009)
    [12] American Society of Civil Engineers. "Minimum design loads for buildings and other structures." Vol. 7. Amer Society of Civil Engineers, (1994)
    [13] 中華民國內政部營建署建築管理組, "建築物耐風設計規範及解說 第二章:建築物設計風力之計算", 中華民國內政部營建署, 台灣, (2013)
    [14] 鄭啟明, "標準地況自然風場實場監測與特性分析(三) ", 內政部建築研究所委託研究報告, (2011)
    [15] Tsai, Y. S. Wu, C. Li, C. & Lin, P. H., "Intertidal zone wind profiling using lidar measurement.", Proceedings of the 35th Ocean Engineering Conference, Taiwan National Sun Yat-sen University, (2013)
    [16] Neustadter, H. E. & Spera, D. A. "Method for evaluating wind turbine wake effects on wind farm performance.", Journal of Solar Energy Engineering, Vol.107.3 p.240-243, (1985)
    [17] Hansen, K. S. Barthelmie, R. J. Jensen, L. E. & Sommer, A. "The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm.", Wind Energy, Vol.15.1, p.183-196, (2012)
    [18] Barthelmie, R. J. Frandsen, S. T. Rathmann, O. Hansen, K. S. Politis, E. S. Prospathopoulos, J. & Neubert, A., "Flow and wakes in large wind farms in complex terrain and offshore.", European Wind Energy Conference, (2008)
    [19] Barthelmie, R. J. Frandsen, S. T. Hansen, K. S. Rados, K. Schlez, W. & Neckelmann, S., "Modelling the impact of wakes on power output at Nysted and Horns Rev.", European Wind Energy Conference, (2009)
    [20] Burton, T. Jenkins, N. Sharpe, D. & Bossanyi, E. "Wind energy handbook." , John Wiley & Sons, (2011)
    [21] Sanderse, B., "Aerodynamics of wind turbine wakes.", Energy Research Center of the Netherlands (ECN), ECN-E–09-016, Petten, The Netherlands, (2009)
    [22] Vermeer, L. J., Jens Nørkær Sørensen, and A. Crespo., "Wind turbine wake aerodynamics.", Progress in aerospace sciences 39.6, p.467-510, (2003)
    [23] Whale, J., Anderson, C. G., Bareiss, R. and Wagner, S., "An experimental and numerical study of the vortex structure in the wake of a wind turbine", Wind Engineering and Industrial Aerodynamics, vol. 84, no. 1, p.1–21, (2000)
    [24] Hu, H. Yang, Z. & Sarkar, P. "Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind.", Experiments in fluids, Vol.52.5, p.1277-1294, (2012)
    [25] 苗君易, 陳子良, 陳儀珍, 林信安,“風力機於模擬大氣邊界層內之尾流特性實驗研究 ", 原能會核能研究所委託研究報告, (2013)
    [26] 苗君易, 呂宗行, 王大中, 曾建洲, "能源國家型科技計畫總期程成果效益報告:風場及風機性能監測之技術研究(I) ", 行政院國家科學委員會, 離岸風力主軸計畫, 台灣, (2014)
    [27] Vermeulen, P. E. J. and Builtjes, P. J. H., "Turbulence measurements in simulated wind turbine clusters.", TNO Division of Technology for Society, (1982)
    [28] Marshall, D. and Stanton, T. E., "On the Eddy System in the Wake of Flat Circular Plates in Three Dimensional Flow", Proceedings of the Royal Society of London, vol. 130, no. 813, p.295-301, (1931)
    [29] Roberts, J. B., "Coherence measurements in an axisymmetric wake", AIAA, vol. 11, no. 11, p.1569-1571, (1973)
    [30] Sakamoto, H. and Haniu, H., "A study on vortex shedding from spheres in a uniform flow", Fluids Engineering, vol. 112, p.386-392, (1990)
    [31] Lee, S. J. and Bearman P. W., "An experimental investigation of the wake structure behind a disk", Fluids and Structures, vol. 6, no. 4, p.437–450, (1992)
    [32] Cannon, S., Champagne, F. and Glezer, A., "Observations of large-scale structures in wakes behind axisymmertric bodies", Experiments in Fluids, vol. 14, no. 6, p.447-450, (1993)
    [33] Miau, J. J., Leu, T. S., Liu, T. W. and Chou J. H., "On vortex shedding behind a circular disk", Experiments in Fluids, vol. 23, no. 3, p.225-233, (1997)
    [34] Medici, D. and Alfredsson, P. H., "Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding", Wind Energy, vol. 9, no. 3, p.219–236, (2006)
    [35] Aubrun, S., Ph Devinant, and G. Espana., "Physical modelling of the far wake from wind turbines. Application to wind turbine interactions. " Proceedings of the European Wind Energy Conference, Milan, Italy. (2007)
    [36] Aubrun, S., Loyer S., España G., Hayden P. and Hancock P., "Is the actuator disc concept sufficient to model the far-wake of a wind turbine?", Proceedings of the ITI2010 Conference on Turbulence, Bertinoro, Italy, (2010)
    [37] Aubrun, S.,Loyer, S. and Espana, G., "Experimental study on the wind turbine wake meandering with the help of a non-rotating simplified model and of a rotating model", 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, (2011)
    [38] Tennekes, Hendrik, and John Leask Lumley., "A first course in turbulence.", MIT press, (1972)
    [39] von Karman, T., "Progress in the statistical theory of turbulence.", Proceedings of the National Academy of Sciences of the United States of America, Vol.34(11), p.530, (1948)
    [40] 苗君易, "流體力學知多少", (2003)
    [41] Taylor, G. I., "The spectrum of turbulence.", Proceedings of the Royal Society of London, Series A-Mathematical and Physical Sciences, Vol.164.919, p.476-490, (1938)
    [42] Frandsen, Sten Tronæs. "Turbulence and turbulence-generated structural loading in wind turbine clusters." Risø National Laboratory, (2007)
    [43] Madsen, H. A. Larsen, G. C. & Thomsen, K. "Wake flow characteristics in low ambient turbulence conditions.", Copenhagen Offshore Wind, (2005)
    [44] Rae, W. H. & Pope, A. "Low-speed wind tunnel testing.", John Wiley, (1984)
    [45] Chamorro, Leonardo P., and Fernando Porté-Agel. "A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects." Boundary-layer meteorology 132.1, p129-149., (2009)
    [46] Wu, Yu-Ting, and Fernando Porté-Agel., "Atmospheric turbulence effects on wind-turbine wakes: An LES study.", energies 5.12, p.5340-5362, (2012)
    [47] 高義明,"內政部建研所環境風洞校驗及二維鈍形體空氣動力流場實驗研究", 成功大學航空太空工程學系學位論文, 1-141頁, (2005)
    [48] 李哲語,"垂直軸風力機葉片性能提升之探討", 成功大學航空太空工程學系學位論文, 1-135頁, (2013)
    [49] Jorgenson, F. "How to Measure Turbulence with Hot Wire Anemometers.", Dantec Dynamics, (2004).
    [50] 馮俊皓,"風機模型與透孔盤尾流特性分析及探討", 成功大學航空太空工程學系學位論文, 1-135頁, (2014)
    [51] Bendat, Julius S., and Allan G. Piersol. "Random data: analysis and measurement procedures." Vol. 729. John Wiley & Sons, (2011)
    [52] Davenport, A. G., "Rationale for determining design wind velocities.", ASCE Journal of the Structural, Division 86.5, p.39-68, (1960)
    [53] 林信安,"以風洞實驗模擬風機尾流與大氣邊界層交互作用", 成功大學航空太空工程學系學位論文, 1-135頁, (2014)
    [54] Prandtl,L., "Collected Work", Springer, vol 2, p.620-626, Berlin., (1961)
    [55] McDonough, J. M. "Introductory lectures on turbulence physics, mathematics and modeling.", University of Kentucky, (2004).
    [56] 鄭啟明, 羅元隆, "風力規範之標準地況分類與紊流邊界層特性研究", 建築學報, 103-120頁, (2009) 

    下載圖示 校內:2020-08-24公開
    校外:2020-08-24公開
    QR CODE