| 研究生: |
葉守圃 Yeh, Shou-Pu |
|---|---|
| 論文名稱: |
氮摻雜奈米鑽石及其應用於生醫相容的電阻式加熱器 Conductive nitrogen doped nanodiamond and its applications to biocompatible resistive heaters |
| 指導教授: |
曾永華
Tzeng, Yon-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 氮摻雜鑽石 、奈米鑽石 、超級奈米鑽石 、電阻加熱器 |
| 外文關鍵詞: | NDD, NCD, UNCD, Resistive heater. |
| 相關次數: | 點閱:104 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃光微影後的導電氮摻雜奈米鑽石(Nitrogen doped diamond, NDD)包夾在兩層絕緣的奈米鑽石(Nanocrystalline diamond, NCD)可作為一個全碳的電阻式加熱器。鑽石有生物相容性,化學惰性,低磨損率和硬度高等特性,這有助於這一類全碳的電阻式加熱器在高度嚴苛的環境下操作,比如在腐蝕性化學品中,和電外科手術的應用上。
微波電漿增強化學氣相沉積法(Microwave plasma enhanced chemical vapor deposition, MPECVD)在Ar/CH4/N2和Ar/CH4氣體混合下,分別合成的氮摻雜奈米鑽石和奈米鑽石。氮摻雜奈米鑽石和奈米鑽石皆有高密度的鑽石成核點以成長為一片連續的薄膜。經由黃光微影之後的氮摻雜奈米鑽石薄膜可讓電流流經微影後的路徑,隨後氮摻雜奈米鑽石被奈米鑽石包覆著,形成全碳的電阻式加熱器。
應用拉曼散射、掃描電子顯微鏡、電子能譜儀、四點探針、原子力顯微鏡及高解析透射電子顯微鏡用來分析氮摻雜奈米鑽石和奈米鑽石的特性。另外紅外線溫度計應用於測繪整個鑽石加熱器的溫度分佈。
Patterned electrically conductive nitrogen doped nanocrystalline diamond (NDD) sandwiched between two insulating intrinsic nanocrystalline diamond (NCD) films severs as an all-carbon resistive heater. Biocompatibility, chemical inertness, low wear rate and high hardness of diamond help make this class of heaters useful for highly demanding applications such as heaters in corrosive chemicals and electrosurgical tools for medical practice.
NDD and NCD are synthesized by microwave plasma enhanced chemical vapor deposition (MPECVD) in Ar/CH4/N2 and Ar/CH4 gas mixtures, respectively. NDD and NCD serve as high-density diamond nuclei for the growth of NCD and NDD over layers. By patterning the shape of the NDD film for allowing an electrical current to flow through, NDD resistive heater is fabricated and subsequently encapsulated by a NCD over layer.
Raman scattering, scanning electron microscope, and high-resolution transmission electron microscope are applied to characterize NDD and NCD grown on each other. Infra-red thermometer is applied to map the temperature profile across the diamond heater and confirm satisfactory operation.
[1] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by CVD and its Electrical properties," Nano Letters, vol. 9, pp. 1752-1758, 2009.
[2] J. E. Gerbi, O. Auciello, J. Birrell, D. M. Gruen, B. W. Alphenaar, and J. A. Carlisle, "Electrical contacts to ultrananocrystalline diamond," Applied Physics Letters, vol. 83, pp. 2001-2003, Sep 8 2003.
[3] http://www.jurassic.com.tw/Stone_pedia/Stone01_09.htm.
[4] http://www.hk-phy.org/atomic_world/carbon/carbon01_c.html.
[5] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, G. Vanhoyland, J. D'Haen, M. D'Olieslaeger, and P. Alnot, "Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures," Applied Physics Letters, vol. 81, pp. 1720-1722, Aug 26 2002.
[6] K. E. Goodson, K. Kurabayashi, and R. F. W. Pease, "Improved heat sinking for laser-diode arrays using microchannels in CVD diamond," Ieee Transactions on Components Packaging and Manufacturing Technology Part B-Advanced Packaging, vol. 20, pp. 104-109, Feb 1997.
[7] E. Kohn, P. Gluche, and M. Adamschik, "Diamond MEMS — a new emerging technology," Diamond and Related Materials, vol. 8, pp. 934-940, 1999.
[8] C.-C. Choua, J.-H. Youb, and C.-L. Wuc, "Processing and Crystal Microstructure of Porous High Pressure Crystallized Nanodiamond/UHMWPE Biomedical Nanocomposite," Advanced Materials Research, vol. 328-330, pp. 857-860, 2011.
[9] K. Miyata, K. Saito, K. Nishimura, and K. Kobashi, "Fabrication and characterization of diamond film thermistors," Review of Scientific Instruments, vol. 65, pp. 3799-3803, 1994.
[10] R. Müller, M. Adamschik, D. Steidl, E. Kohn, S. Thamasett, S. Stiller, H. Hanke, and V. Hombach, "Application of CVD-diamond for catheter ablation in the heart," Diamond and Related Materials, vol. 13, pp. 1080-1083, 2004.
[11] P. Gluche, R. Leuner, A. Vescan, W. Ebert, E. Kohn, C. Rembe, S. aus der Wiesche, and E. P. Hofer, "Actuator – sensor technology on “electronic grade” diamond films," Microsystem Technologies, vol. 5, pp. 38-43, 1998.
[12] S. Basu, W. P. Kang, J. L. Davidson, B. K. Choi, A. B. Bonds, and D. E. Cliffel, "Electrochemical sensing using nanodiamond microprobe," Diamond and Related Materials, vol. 15, pp. 269-274, 2006.
[13] D. Gandini, E. Mahé, P. A. Michaud, W. Haenni, A. Perret, and C. Comninellis, "Oxidation of carboxylic acids at boron-doped diamond electrodes for wastewater treatment," Journal of Applied Electrochemistry, vol. 30, pp. 1345-1350, 2000.
[14] S. T. Lee, Z. Lin, and X. Jiang, "CVD diamond films: nucleation and growth," Materials Science and Engineering: R: Reports, vol. 25, pp. 123-154, 1999.
[15] J. C. Angus, "Diamond and diamond-like films," Thin Solid Films, vol. 216, pp. 126-133, 1992.
[16] M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology: John Wiley & Son, 1993.
[17] 宋健民, "工業材料," 1995.
[18] P. E. Pehresson, F. G. Celii, and J. E. Butler, Diamond Films And Coatings: Noyes Publications, 1993.
[19] P. Mehta Menon, A. Edwards, C. S. Feigerle, R. W. Shaw, D. W. Coffey, L. Heatherly, R. E. Clausing, L. Robinson, and D. C. Glasgow, "Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films," Diamond and Related Materials, vol. 8, pp. 101-109, 1999.
[20] P. W. May, "Diamond thin films: a 21st-century material," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, pp. 473-495, January 15, 2000 2000.
[21] P. K. Bachmann, Thin Film Diamond. Champman & Hall: Champman & Hall, 1994.
[22] D. Li, D. Zuo, W. Lu, R. Chen, B. Xiang, and M. Wang, "Effects of methane concentration on diamond spherical shell films prepared by DC-plasma jet CVD," Solid State Ionics, vol. 179, pp. 1263-1267, 2008.
[23] A. V. Sumant, O. Auciello, H.-C. Yuan, Z. Ma, R. W. Carpick, and D. C. Mancini, "Large Area Low Temperature Ultrananocrystalline Diamond (UNCD) Films and Integration with CMOS Devices for Monolithically Integrated Diamond MEMS/NEMS-CMOS Systems," Proc. of SPIE, vol. 7318, p. 731817, 2009.
[24] A. V. Sumant, A. R. Krauss, D. M. Gruen, O. Auciello, A. Erdemir, M. Williams, A. F. Artiles, and W. Adams, "Ultrananocrystalline Diamond Film as a Wear-Resistant and Protective Coating for Mechanical Seal Applications," Tribology Transactions, vol. 48, pp. 24-31, 2005/01/01 2005.
[25] O. Auciello. (2007) Are diamonds a MEMS' best friend? IEEE Microwave Magazine. 61-75.
[26] A. V. Sumant, O. Auciello, R. W. Carpick, S. Srinivasan, and J. E. Butler, "Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications," MRS Bulletin, vol. 35, pp. 281-288, 2010.
[27] Y. Gurbuz, O. Esame, I. Tekin, W. P. Kang, and J. L. Davidson, "Diamond semiconductor technology for RF device applications," Solid-State Electronics, vol. 49, pp. 1055-1070, Jul 2005.
[28] M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of Industrial Diamonds and Diamond Films: Marcel Dekker Inc, 1998.
[29] J. Robertson, "Mechanism of bias-enhanced nucleation and heteroepitaxy of diamond on Si," Diamond and Related Materials, vol. 4, pp. 549-552, 1995.
[30] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," Journal of Applied Physics, vol. 96, pp. 2232-2239, 2004.
[31] O. Shenderova, S. Hens, and G. McGuire, "Seeding slurries based on detonation nanodiamond in DMSO," Diamond and Related Materials, vol. 19, pp. 260-267, 2010.
[32] D. Pradhan, L.-J. Chen, Y.-C. Lee, C.-Y. Lee, N.-H. Tai, and I. N. Lin, "Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature," Diamond and Related Materials, vol. 15, pp. 1779-1783, 2006.
[33] Y. Tang, Y. S. Li, C. Zhang, L. Zhang, L. Yang, Q. Yang, and A. Hirose, "Study of nanocrystalline diamond synthesis in MPCVD by bias enhanced nucleation and growth," Diamond and Related Materials, vol. 25, pp. 87-91, 2012.
[34] D. D. and S. R. N., "A review of nucleation, growth and low temperature synthesis of diamond thin films," International Materials Reviews, vol. 52, pp. 29-64, 2007.
[35] Y. K. Liu, Y. Tzeng, C. Liu, P. Tso, and I. N. Lin, "Growth of microcrystalline and nanocrystalline diamond films by microwave plasmas in a gas mixture of 1% methane/5% hydrogen/94% argon," Diamond and Related Materials, vol. 13, pp. 1859-1864, 2004.
[36] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH[sub 4]/H[sub 2] microwave plasmas," Journal of Applied Physics, vol. 84, pp. 1981-1989, 1998.
[37] A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, A. R. Krauss, and D. M. Gruen, "Friction and wear properties of smooth diamond films grown in fullerene + argon plasmas," Diamond and Related Materials, vol. 5, pp. 923-931, 1996.
[38] M. Sternberg, P. Zapol, and L. A. Curtiss, "Carbon dimers on the diamond (100) surface: Growth and nucleation," Physical Review B, vol. 68, p. 205330, 2003.
[39] K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, Y. Hirose, and T. Nakamura, "Characterization of Boron-Doped Diamond Film," Japanese Journal of Applied Physics, vol. 28, p. 1066, 1989.
[40] R. Locher, C. Wild, N. Herres, D. Behr, and P. Koidl, "Nitrogen stabilized <100> texture in chemical vapor deposited diamond films," Applied Physics Letters, vol. 65, pp. 34-36, 1994.
[41] S. Jin and T. D. Moustakas, "Effect of nitrogen on the growth of diamond films," Applied Physics Letters, vol. 65, pp. 403-405, 1994.
[42] E. D. Specht, R. E. Clausing, and L. Heatherly, "X-ray and optical characterization of three growth morphologies of CVD diamond films," Journal of Crystal Growth, vol. 114, pp. 38-46, 1991.
[43] C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, "Chemical vapour deposition and characterization of smooth {100}-faceted diamond films," Diamond and Related Materials, vol. 2, pp. 158-168, 1993.
[44] C. Wild, R. Kohl, N. Herres, W. Müller-Sebert, and P. Koidl, "Oriented CVD diamond films: twin formation, structure and morphology," Diamond and Related Materials, vol. 3, pp. 373-381, 1994.
[45] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Applied Physics Letters, vol. 79, pp. 1441-1443, 2001.
[46] J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, "Bonding structure in nitrogen doped ultrananocrystalline diamond," Journal of Applied Physics, vol. 93, pp. 5606-5612, 2003.
[47] D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P. H. Chang, and H. Gnaser, "Synthesis and electron field emission of nanocrystalline diamond thin films grown from N[sub 2]/CH[sub 4] microwave plasmas," Journal of Applied Physics, vol. 82, pp. 4546-4550, 1997.
[48] P. G, T. S. J, and A. K. T, "On the Contribution of Triple Junctions to the Structure and Properties of Nanocrystalline Materials," Scripta Metallurgica Et Materialia, vol. 24, pp. 1347-1350, 1990.
[49] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, "The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond," Diamond and Related Materials, vol. 11, pp. 43-48, 2002.
[50] P. R. Chalker, C. Johnston, J. A. A. Crossley, J. Ambrose, C. F. Ayres, R. E. Harper, I. M. Buckley-Golder, and K. Kobashi, "Degradation mechanisms of passivated and unpassivated diamond thermistors," Diamond and Related Materials, vol. 2, pp. 1100-1106, 1993.
[51] M. Aslam, G. S. Yang, and A. Masood, "Boron-doped vapor-deposited diamond temperature microsensors," Sensors and Actuators A: Physical, vol. 45, pp. 131-137, 1994.
[52] R. C. Paul, J. Colin, and W. Matthias, "Physical properties of diamond for thermistors and pressure transducers," Semiconductor Science and Technology, vol. 18, p. S113, 2003.
[53] 廖駿偉, 蕭祝螽, and 陳蔚宗, "OES 技術於電漿製程監測之應用," 工業材料雜誌, vol. 213, p. 175, 2004.
[54] K. J. Sankaran, P. T. Joseph, H. C. Chen, N. H. Tai, and I. N. Lin, "Investigation in the role of hydrogen on the properties of diamond films grown using Ar/H2/CH4 microwave plasma," Diamond and Related Materials, vol. 20, pp. 232-237, 2011.
[55] C.-S. Wang, G.-H. Tong, H.-C. Chen, W.-C. Shih, and I. N. Lin, "Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films," Diamond and Related Materials, vol. 19, pp. 147-152, 2010.
[56] J.-F. Zhang, X.-C. Bian, Q. Chen, F.-P. Liu, and Z.-W. Liu, "Diagnosis of Methane Plasma Generated in an Atmospheric Pressure DBD Micro-Jet by Optical Emission Spectroscopy," Chinese Physics Letters, vol. 26, p. 035203, 2009.
[57] http://en.wikipedia.org/wiki/Scanning_electron_microscope.
[58] http://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg.
[59] D. S. Knight and W. B. White, "Characterization of Diamond Films by Raman-Spectroscopy," Journal of Materials Research, vol. 4, pp. 385-393, Mar-Apr 1989.
[60] Z. Lu, L. Zhang, X. Ma, N. Yao, and B. Zhang, "The growth process and field emission characteristics of spherical aggregates of polycrystalline diamond flakes," physica status solidi (c), vol. 9, pp. 41-43, 2012.
[61] S. Raina, W. P. Kang, and J. L. Davidson, "Field emission from nanodiamond grown with ‘ridge’ type geometrically enhanced features," Diamond and Related Materials, vol. 17, pp. 790-793, 2008.
[62] http://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg.
[63] http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy.
[64] http://en.wikipedia.org/wiki/Transmission_electron_microscopy.