簡易檢索 / 詳目顯示

研究生: 張嘉芸
Chang, Chia-Yun
論文名稱: 硫化與氯化對閃積金層鍍鈀銅導線顯微組織與打線接合特性研究
The Microstructure and Bonding Properties of Pd-Coated Cu wires Flash Au after Sulfidation and Chlorination
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 閃積金鍍鈀銅導線(PCA線)鍍鈀銅線硫化氯化打線接合
外文關鍵詞: Pd-coated Cu wires flash Au (PCA wire), Pd-coated copper wire (PCC wire), sulfidation, chlorination, wire bonding
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 閃積金層鍍鈀銅導線(Pd-Coated Cu wires Flash Au, PCA wire)為有效加強銅線抗腐蝕及抗氧化缺點之新興微細導線,能同時擁有鍍鈀銅線的抗氧化能力且抑制介金屬化合物生成,以及具有鍍金銅線的抗腐蝕性與提升接合強度。若鍍金銅線的鍍金層太厚,於放電結球時會包覆內部線材,使線材失去真圓性,導致無法應用於打線接合製程。因此本研究採用閃積方式,將鍍鈀銅線以化學浸鍍方法在表面快速鍍上一層薄的鍍金層,藉此降低因鍍層包覆而不易成球的問題。並透過創新的硫化與氯化實驗,了解線材的抗腐蝕性;以及比較硫化與氯化實驗後之打線接合強度與表面形貌。
    在硫化試驗方面,PCA線抗硫化特性較鍍鈀銅線和純銅線好,硫化後拉伸性質沒有太大變化,但由延伸率發現閃金層可延緩劣化2小時以上。電性部分則是有稍微影響,但鍍鈀銅線的電阻上升趨勢較明顯;氯化試驗部分,PCA線仍然有較好的抗氯化特性,拉伸性質亦沒有改變,電阻則是PCA線與鍍鈀銅線皆有明顯上升,證明PCA線的閃積金層可有效增強抗腐蝕性,但因氯化實驗為孔蝕,因此會以鍍金層較薄的部份侵蝕,使得PCA線和鍍鈀銅線的抗氯腐蝕性差異不大。
    透過硫化和氯化實驗,調查PCA線與鋁基板接合前後之強度和電性。硫化後之強度無變化,因表面有硬脆硫化物增加強度,但電阻因硫化物厚度增加而明顯提高。氯化後之強度明顯下降且電阻明顯增加,因氯離子孔蝕使得接合部被侵蝕而造成。第二銲點頸部因下壓後鍍層硬化,抗腐蝕性較尾部佳。綜合而論,PCA線確實可以增強銅線抗腐蝕及抗氧化能力,亦可增加接合強度,因此可應用於不同環境下的晶片封裝。

    Palladium coated copper wire with flash gold (PCA) is a fine wire that can effectively enhance the corrosion resistance and oxidation resistance. This study applied the new sulfidation and chlorination test. We confirm that PCA wires have better sulfidation corrosion resistance than both palladium coated copper (PCC) wires and bare copper wires and the flash gold layer can retard degradation for more than 2 hours. In chlorination test, chlorine ion erode by pitting. So PCA wires do not have apparent corrosion resistance. We also investigated the bonding strength and electrical properties after PCA wire bonded on the aluminum substrate by sulfidation and chlorination test. After the sulfidation test, the bonding strength had no change. Because the surface had hard and brittle sulfide to increase the intensity, but the electrical resistance improved due to the thickness of sulfide was significantly increased. The bonding strength decreased significantly and the electronic resistance increased significantly after chlorination test, due to chloride ion etching caused by the erosion of the bonding area. The research not only analyzes the surface of wire, the tensile properties, the bonding strength and electrical properties, but also discusses the metallurgic mechanism of free air balls (FAB) during the electric flame-off (EFO) process. With the increase in the diameter of the ball, gold atoms distribute uniformly and the segregation of palladium atoms can retard. The flash gold layer of PCA wires can improve certain shortcomings, including: (1) efficiently promoting the sulfidation corrosion resistance; (2) solving the problem of segregating palladium during the electric flame-off (EFO) process; (3) reducing the starting voltage; and, (4) stabilizing the electrical resistivity of the bonding interface.

    中文摘要 ........................................................... I 英文摘要 .......................................................... II 誌謝 ............................................................ XVII 總目錄 ......................................................... XVIII 表目錄 .......................................................... XXII 圖目錄 ......................................................... XXIII 第一章 前言 ........................................................ 1 第二章 文獻回顧 .................................................... 2 2-1 打線接合製程................................................. 2 2-1-1 銲頭特性分類 .............................................. 2 2-1-2 接合技術分類 ............................................. 3 2-1-3 氣氛環境應用 .............................................. 4 2-2 放電結球..................................................... 4 2-2-1 球部與線材微觀組織 ........................................ 4 2-3 影響接合可靠度之參數......................................... 5 2-4 打線接合線材介紹............................................. 6 2-4-1 鋁線 ...................................................... 6 2-4-2 金線 ...................................................... 6 2-4-3 銀線 ...................................................... 7 2-4-4 銅線 ...................................................... 7 2-4-5 鍍鈀銅線 .................................................. 8 2-4-6 鍍金銅線 .................................................. 8 2-4-7 閃積金層鍍鈀銅導線 ........................................ 8 2-5 熱與電效應下介金屬化合物特性................................. 9 2-5-1 高溫時效實驗與介金屬化合物 ................................ 9 2-5-2 通電試驗與介金屬化合物 ................................... 10 2-6 研究目的.................................................... 10 第三章 實驗步驟與方法 ............................................. 14 3-1 實驗材料.................................................... 14 3-2 放電結球與打線接合.......................................... 14 3-3 表面形貌與微觀組織調查...................................... 15 3-4 微硬度測試.................................................. 15 3-5 拉伸測試.................................................... 15 3-5-1 線材拉伸測試 ............................................. 15 3-5-2 頸部強度測試 ............................................. 16 3-5-3 第一銲點拉力測試 ......................................... 16 3-6 通電測試.................................................... 16 3-6-1 線材通電測試 ............................................. 16 3-6-2 線材通電拉伸測試 ......................................... 16 3-6-3 接合通電測試 ............................................. 17 3-7 硫化實驗.................................................... 17 3-8 氯化實驗.................................................... 17 第四章 結果與討論 ................................................. 24 4-1 硫化對閃積金層鍍鈀銅導線與鍍鈀銅線特性之影響............... 24 4-1-1 表面形貌與微觀組織解析 ................................... 24 4-1-2 硫化對線材拉伸性質之影響 ................................. 25 4-1-3 硫化前後線材通電熔斷曲線 ................................. 25 4-2 氯化對閃積金層鍍鈀銅導線與鍍鈀銅線特性之影響............... 26 4-2-1 表面形貌與微觀組織解析 ................................... 26 4-2-2 氯化對線材拉伸性質之探討 ................................. 27 4-2-3 氯化前後線材通電熔斷曲線 ................................. 27 4-3閃積金層鍍鈀銅導線結球特性調查.............................. 28 4-3-1 結球外觀與微觀組織特徵 ................................... 28 4-3-2 球部與熱影響區硬度分佈 ................................... 29 4-3-3 閃積金層鍍鈀銅導線球部元素分佈 ........................... 29 4-4閃積金層鍍鈀銅導線打線接合性質探討........................... 30 4-4-1 接合後長時間通電試驗之通電熔斷曲線 ....................... 30 4-4-2 硫化與氯化後接合強度分析 ................................. 31 4-4-3 硫化與氯化對接合電性之影響 ............................... 31 4-4-4硫化與氯化後界面拉伸及電性測試與表面形貌分析 ............. 32 4-4-5硫化與氯化對第二銲點表面形貌與接合特性之影響 ............. 33 4-5硫化與氯化機制............................................... 34 第五章 結論 ....................................................... 64 參考文獻 .......................................................... 65

    1. G. G. Harman and J. Albers, “The Ultrasonic Welding Mechanism as Applied to Aluminum and Gold Wire Bonding in Microelectronics”, IEEE Transaction on Parts Hybrids and Packaging, 13(1977) pp. 406-412.
    2. N. Srikanth, S. Murali, Y. W. Wong and C. J. Vath III, “Critical Study of Thermosonic Copper Ball Bonding”, Thin Solid Films, 462-463 (2004) pp. 339-345.
    3. S. Murali, N. Srikanth and C. J. Vath III, “Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Materials Characterization, 50(1) (2003) pp. 39-50.
    4. S. Kaimor, T. Nonaka and A. Mizoguchi, “The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating”, IEEE Transactions on Advanced Packaging, Vol.29, No.2, (2006) pp. 227-231.
    5. G. G. Harman, “Wire Bonding in Microelectronics, 3rd Ed.”, McGraw-Hill, New York (2010) pp. 1-11.
    6. Y. Tian, C. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, "Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature", Journal of Materials Processing Technology, Vol. 208 (2008) pp. 179-186.
    7. 陳家旭,「打線接合之實驗與有限元素研究」,國立交通大學機械工程研究所碩士論文,民國九十一年。
    8. O. L. Anderson, H. Christensen and P. Andreatch, "Technique for Connecting Electrical Leads to Semiconductors", Journal of Applied Physics, Vol. 28 (1957) pp. 923-923.
    9. B. Langenecker, "Effects of Ultrasound on Deformation Characteristics of Metals", IEEE Transactions on Sonics and Ultrasonics,Vol. 13 (1966) pp. 1-8.
    10. C. J. Hang, C. Q. Wang, Y. H. Tian, M. Mayer, Y. Zhou, "Microstructural Study of Copper Free Air Balls in Thermosonic Wire Bonding", Microelectronic Engineering, Vol. 85 (2008) pp. 1815-1819.
    11. I. M. Kohen, L. J. Huang and P. S. Ayyaswamy, “Melting and Solidification of Thin Wires: A Class of Phase-Change Problems with A Mobile Interface – II. Experimental Confirmation”, International Journal of Heat and Mass Transfer, Vol. 38, No.9 (1995) pp. 1647-1659.
    12. 林宜璋,「不同退火條件之銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程研究所碩士論文,民國九十六年。
    13. 陳建良,「發光二極體中打線接合構裝技術之研究」,國立台灣科技大學醫學工程研究所碩士論文,民國一百年。
    14. C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, “Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force”, Microelectronic Engineering, Vol. 86(2009) pp. 2094-2103.
    15. 陳眉瑜,「20μm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討」,國立成功大學材料科學與工程研究所碩士論文,民國一百零二年。
    16. H. C. William, "Metal Handbook-Properties and Selection: Nonferrous Alloys and Pure Metals", ASM International, 9th ed. Vol. 2 (1979).
    17. 張文杰,易萬,吳瑾,「鋁互連線的電遷移問題及超微亞微米技術下的挑戰」,物理學報,Vol. 55(2006)
    18. G. Khatibi, B. Weiss, J. Bernardi and S. Schwarz, "Microstructural Investigation of Interfacial Features in Al Wire Bonds", Journal of Electronic Materials, Vol. 41 (2012) pp. 3436-3446.
    19. 朱冠銘,「具奈米鍍鋅層精細鋁矽導線之放電成球機制及打線接合可靠度研究」,國立成功大學材料科學與工程研究所碩士論文,民國一百零五年。
    20. H. G. Kim, T. W. Lee, E. K. Jeong, W. Y. Kim and S. H. Lim, "Effects of Alloying Elements on Microstructure and Thermal Aging Properties of Au Bonding Wire", Microelectronics Reliability, Vol. 51, No. 12 (2011) pp. 2250-2256.
    21. M. A. Bahi, P. Lecuyer, A. Gentil, H. Fremont, J. P. Landesman, F. Christien and R. L. Gall, "Degradation Mechanisms of Au-Al Wire Bonds During Qualification Tests at High Temperature for Automotive Applications: Quality Improvement by Process Modification", IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 3 (2008) pp. 484-489.
    22. T. M. Jeong, S. H. June, S. C. Jong and H. K. Seong, "New Materials for Bonding Wire", in Semicon Singapore. (2008). Singapore.
    23. K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, "Reliability Study of Low Cost Alternative Ag Bonding Wire with Various Bond Pad Materials", IEEE Electronics Packing Technology Conf., (2009) pp. 851-857.
    24. C. D. Breach ; F. Wulff, "New observations on intermetallic compound formation in gold ball bonds: General growth patterns and identification of two forms of Au4Al. Microelectronics Reliability." (2004), 44 (6) pp. 973-981.
    25. Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh and J. Tan, “Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding”, Microelectronic Engineering, Vol. 84 (2007) pp. 368-374.
    26. T. Uno, “Enhancing Bondability with Coated Copper Bonding Wire”, Microelectronics Reliability, Vol. 51 (2011) pp. 88-96.
    27. 鄭傑勻,「濺鍍金之銅導線成球性及打線接合可靠度研究」,國立成功大學材料科學與工程研究所碩士論文,民國一百零四年。
    28. T. C. Wei and A. R. Daud. ”Mechanical and Electrical Properties of Au-Al and Cu-Al Intermetallics Layer at Wire Bonding Interface”, Electronic Packaging, 125(4) (2003) pp.617.
    29. S. Murali, N. Srikanth and C. J. Vath, ”Effect of Wire Size on The Formation of Intermetallics and Kirkendall Voids on Thermal Aging of Thermosonic Wire Bonds”, Materials letters, 58(25) (2004) pp. 3096-3101.
    30. C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang,”Growth Behavior of Cu/Al Intermetallic Compounds and Cracks in Copper Ball Bonds During Isothermal Aging”, Microelectronics Reliability, 48(3) (2008) pp. 416-424.
    31. H. Xu, I. Qin, H. Clauberg, B. Chylak and V. L. Acoff, “ Behavior of Palladium and Its Impact on Intermetallic Growth in Palladium-Coated Cu Wire Bonding”, Acta Materialia, Vol. 61 (2013) pp. 79-88.
    32. R. R. Keller, R. H. Geiss, Y. W. Cheng, and D. T. Read, “Microstructure Evolution During Electric Current Induced Thermomechanical Fatigue of Interconnects”, Materials Reliability Division, National Institute of Standards and Technology, (2005) pp. 295-300.
    33. W. J. Van Ooij, “Surface Composition, Oxidation and Sulfidation of Cold-Worked Brass and Brass-Coated Steel Wire as Studied by X-ray Photoelectron Spectroscopy I. Surface Composition of Commercial Cold-Worked Brass.”, Vol. 6 (1977) pp. 1-18.
    34. G. W. Kammlott, J. P. Franey and T. E. Graede, “Atmospheric Sulfidation of Copper Alloys: I . Brasses and Bronzes.” J. Electrochem. Soc. 1984 131(3) pp. 505-511.
    35. D. P. Field, B. W. True, T. M. Lillo, J. E. Flinn, “Observation of Twin Boundary Migration in Copper During Deformation.”, Materials Science and Engineering A 372 (2004) pp.173-179.
    36. I. T. Huang, F. Y. Hung, T. S. Lui, L. H. Chen and H. W. Hsueh, “A Study on The Tensile Fracture Mechanism of 15 μm Copper Wire After EFO Process.”, Vol. 51 (2011) pp. 25-29.
    37. Y. W. Lin, R. Y. Wang, W. B. Ke, I. S. Wang, Y. T. Chiu, K. C. Lu, K. L. Lin and Y. S. Lai, “The Pd Distribution and Cu Flow Pattern of The Pd-Plated Cu Wire Bond and Their Effect on The Nanoindentation”, Materials Science and Engineering, Vol. 543 (2012) pp. 152-157.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE