簡易檢索 / 詳目顯示

研究生: 劉庭佑
Liu, Ting-You
論文名稱: 自動產製最佳視覺化之空載光達點雲剖面圖以利群眾外包巨木搜尋
Automatic Generation of Visualization ALS Point Cloud Profile to Facilitate Searching Giant Tree via Crowdsourcing
指導教授: 王驥魁
Wang, Chi-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: 空載光達最佳視覺化巨木剖面圖樹冠高度模型群眾外包
外文關鍵詞: Airborne Laser Scanner, Point Cloud Profile, Giant tree, Crowdsourcing
相關次數: 點閱:77下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣森林面積共約219萬公頃,森林覆蓋率高達60%。巨木探索能增加大眾對於台灣山林的保育意識,且為植物地理學上至關重要的議題,但目前台灣對巨木的探勘整體而言仍較為貧乏。現行之巨木探勘係利用空載光達(Airborne Laser Scanner, ALS)具有穿透森林樹冠層並產生多個回波的特性,使用點雲資料產製樹冠高度模型(Canopy Height Model, CHM),並從中搜尋巨木。由於CHM的數值受懸崖、斜坡地及樹木傾斜等因素影響,無法直接使用CHM自動化尋找巨木,而是將CHM數值高於樹高閾值的區域分類為疑似巨木點位,再由專業人員人工檢視疑似巨木點位的光達點雲資料,確認巨木存在與否,並選取最適合之角度繪製最佳視覺化的巨木剖面圖用於展示。
    然而重複檢視光達資料為高度勞力之工作,因此本研究提出一種結合群眾外包(Crowdsourcing)概念與自動化資料處理之巨木探勘方法,探詢借重社會大眾的力量協助巨木探勘之可行性。本研究光達資料為內政部地政司與經濟部中央地質調查局所提供,總共取得180個1/5000個圖幅資料,總面積約為1265 km2。本研究定義樹高高於65 m的樹木為巨木,並篩選CHM大於65 m的資料為疑似巨木點位,採用最小二乘法(Least Squares Method)與法向量法(Normal Vector Method)自動化產製疑似巨木點位之最佳視覺化的巨木剖面圖,以節省人工繪製所耗費之專業人力。本研究以國立成功大學測量及空間資訊學系之學生為受試群眾,依年級區分為三個群組,群組I由大二學生組成,共43人;群組II由大三學生組成,共53人;群組III由大四以上學生組成,共20人,以自架網站將疑似巨木點位之最佳視覺化的巨木剖面圖分配給各群組,使其判識巨木之存在與否,並與專業人員依現行方法檢視點雲資料判識之參考資料相比較。結果顯示自動化產製與專業人員人工繪製之最佳視覺化的巨木剖面圖的相關係數(R2)為0.95,兩者具有高度一致性。受試者使用自動化產製疑似巨木點位之最佳視覺化的巨木剖面圖判識成果之Accuracy、Recall、Precision精度指標分別為,群組I:80%、73%、17%;群組II:83%、69%、19%;群組III:75%、81%,15%,三者之Accuracy均高於75%。另一方面,運用羅吉斯迴歸方法,針對樹高、平均坡度、圖面高程差、地面點厚度等因素,分析其對於群眾使用剖面圖判識巨木的影響。結果顯示當平均坡度、圖面高程差與地面點厚度越低,樹高越高時,有利於群眾正確的從剖面圖中辨識巨木。

    Airborne laser scanner(ALS) has the characteristic of penetrating the forest canopy, so the canopy height model (CHM) produced by ALS can be used to search for giant trees. In this research, giant trees were defined as trees with a height higher than 65 m, and locations higher than 65 m in the CHM are used as suspected giant tree locations. Since the value of CHM will be affected by cliffs, slopes and the inclination of trees, professionals must use the original point cloud data to confirm whether the giant tree exist. The giant tree point cloud profile is saved to record its appearance after confirmation. However, it takes a lot of human resource and time to generate the visualization profile of giant trees. Therefore, this research looks for an automatic way to generate the visualization profile. This research selected least-squares method and normal vector method to determine the visualization profile, and produce it automatically. The results showed that the correlation coefficient (R2) between the manual and the automatic visualization profile reached 0.95.
    Crowdsourcing has gradually emerged in recent years. Under this model, human resources can be obtained through the Internet. According to our experience, there are numerous suspected locations. Repeated confirmation in ALS data is labor-intensive work. Therefore, this research assigns the visualization profile of the suspected giant tree locations to the three different groups. Finally, the average Accuracy, Recall, and Precision of three groups are: group I: 80%, 73%, 17%; group II: 83%, 69%, 19%; group III: 75%, 81%, 15%, the Accuracy of the three groups is higher than 75%.

    摘要 i 致謝 x 目錄 xi 表目錄 xiii 圖目錄 xiv 第壹章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 1.2.1 空載光達應用於搜尋樹木 3 1.2.2 群眾外包 4 第貳章 研究區域與材料 6 2.1 研究樣區 6 2.2 空載光達資料 7 2.3 利用空載光達資料產製樹冠高度模型(CHM) 7 2.4 最佳視覺化的剖面角度 8 2.5 地真資料 10 2.5.1 人工尋找的巨木點位 10 2.5.2 人工繪製的最佳視覺化的剖面角度 12 第參章 研究方法 13 3.1 開發自動化產製最佳視覺化的巨木剖面圖 14 3.1.1. 最小二乘法計算的最佳視覺化剖面角度 14 3.1.2. 法向量法計算的最佳視覺化剖面角度 15 3.1.3. 最佳視覺化的巨木剖面圖的決定 17 3.1.4. 自動化產製與人工繪製之比較 18 3.2 尋找巨木的群眾外包 19 3.2.1 以局部最大值法自動化尋找疑似巨木點位 19 3.2.2 自動化產製群眾外包任務使用的巨木剖面圖 20 3.2.3 群眾外包任務網頁的架設 21 3.2.4 群眾外包的精確度評估 23 3.2.5 以羅吉斯迴歸分析影響群眾外包任務的因素 24 第肆章 結果與討論 30 4.1 自動化產製最佳視覺化的巨木剖面圖 30 4.1.1. 自動化產製成果 30 4.1.2. 自動化與人工產製最佳視覺化的巨木剖面圖相關性分析 32 4.2 尋找巨木的群眾外包 34 4.2.1. 志願者於群眾外包的表現 34 4.2.2. 探討各因素對於群眾外包的影響 39 第伍章 結論 45 未來展望 47 參考文獻 49

    Albuquerque, J., Herfort, B., Eckle, M. The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping. Remote Sensing 8, 859. 2016.
    Arcanjo, J.S.; Luz, E.F.P.; Fazenda, Á.L.; Ramos, F.M. Methods for Evaluating Volunteers’ Contributions in a Deforestation Detection Citizen Science Project. Future Generation Computer Systems. 56, 550-557. 2016.
    Agresti A. Categorical Data Analysis, 2nd ed., John Wiley, 710. 2002.
    Barnes, C., Balzter, H., Barrett, K., Eddy, J., Milner, S., Suárez, J. Individual Tree Crown Delineation from Airborne Laser Scanning for Diseased Larch Forest Stands. Remote Sensing 9, 231. 2017.
    Chan, J.; Crowley, J.; Elhami, S.; Erle, S.; Munro, R.; Schnoebelen, T. Aerial Damage Assessment FollowingHurricane Sandy. Available online : http://www.giscorps.org/index.php?option=com_content&task=view&id=135&Itemid=59 (accessed on 2021)
    Chu, H.-J., Wang, C.-K., Huang, M.-L., Lee, C.-C., Liu, C.-Y., Lin, C.-C. Effect of Point Density and Interpolation of LiDAR-derived High-resolution DEMs on Landscape Scarp Identification. GIScience & Remote Sensing 51, 731-747. 2014.
    Cosenza, D.N., Soares, V.P., Leite, H.G., Gleriani, J.M., Amaral, C.H.D., Gripp Júnior, J., Silva, A.A.L.D., Soares, P., Tomé, M. Airborne Laser Scanning Applied to Eucalyptus Stand Inventory at Individual Tree Level. Pesquisa Agropecuária Brasileira 53, 1373-1382, 2018.
    Dai, W., Yang, B., Dong, Z., Shaker, A. A New Method for 3D Individual Tree Extraction Using Multispectral Airborne LiDAR Point Clouds. ISPRS Journal of Photogrammetry and Remote Sensing 144, 400-411, 2018.
    Eckenwalder JE. Conifers of The World. Timber Press. London, UK. 2009.
    Edson, C., Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sensing 3, 2494-2528, 2011.
    Feinberg S. The Analysis of Cross-classified Categorical Data (2nd ed.), Cambridge, MA: MIT Press, 198. 1985.
    Glenn, N.F., Streutker, D.R., Chadwick, D.J., Thackray, G.D., Dorsch, S.J. Analysis of LiDAR-derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity. Geomorphology 73, 131-148. 2006.
    Gupta, S., Weinacker, H., Koch, B. Comparative Analysis of Clustering-Based Approaches for 3-D Single Tree Detection Using Airborne Fullwave LiDAR Data. Remote Sensing 2, 968-989. 2010.
    Haklay, M. Citizen Science and Volunteered Geographic Information: Overview and Typology of Participation, In: Crowdsourcing Geographic Knowledge. Dordrecht: Springer; pp. 105-122. 2013.
    Hayata, T., Hotta, T. & Iwakiri, M. 3D Point Cloud Cluster Analysis Based on Principal Component Analysis of Normal-Vectors. IEEE 4th Global Conference on Consumer Electronics (GCCE), 511-512, 2015.
    Holmgren, J., Lindberg, E. Tree Crown Segmentation Based on a Tree Crown Density Model Derived from Airborne Laser Scanning. Remote Sensing Letters 10, 1143-1152, 2019.
    Howe, J. The Rise of Crowdsourcing. Wired Magazine, 14(6): 1-4. 2006.
    Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., Maltamo, M. Review of Methods of Small‐footprint Airborne Laser Scanning for Extracting Forest Inventory Data in Boreal Forests. International Journal of Remote Sensing 29, 1339-1366. 2008.
    Jakubowski, M., Li, W., Guo, Q., Kelly, M. Delineating Individual Trees from LiDAR Data: A Comparison of Vector- and Raster-based Segmentation Approaches. Remote Sensing 5, 4163-4186. 2013.
    Jokar Arsanjani, J., Zipf, A., Mooney, P., Helbich, M. OpenStreetMap in GIScience; Springer International Publishing: Basel, Switzerland, 2015.
    Johnson, R. A. and Wichern, D. W. Applied Multivariate Statistical Analysis. Prentice Hall, New Jersey, USA, 5th edition. 2002.
    Kerle, N., Hoffman, R. R. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering. Natural hazards and earth system sciences, 13 (1), s. 97-113. 2013.
    Kim, E., W. K. Lee, M. Yoon, J. Y. Lee, E. J. Lee, and J. Moon. Detecting Individual Tree Position and Height Using Airborne LiDAR Data in Chollipo Arboretum, South Korea. Terrestrial Atmospheric and Oceanic Sciences 27 (4):593-604. 2016.
    Koch, B., Heyder, U., Weinacker, H. Detection of Individual Tree Crowns in Airborne LiDAR Data. Photogrammetric Engineering & Remote Sensing 72, 357-363. 2006.
    Kwak, D. A., W. K. Lee, J. H. Lee, G. S. Biging, and P. Gong. Detection of Individual Trees and Estimation of Tree Height Using LiDAR Data. Journal of Forest Research 12 (6):425-434. 2007.
    Kwak, D. A., W. K. Lee, H. K. Cho, S. H. Lee, Y. Son, M. Kafatos, and S. R. Kim. Estimating Stem Volume and Biomass of Pinus Koraiensis Using LiDAR Data. Journal of Plant Research 123 (4):421-432. 2010.
    Larjavaara, M., Muller-Landau, H.C. Temperature Explains Global Variation in Biomass among Humid Old-growth Forests. Global Ecology and Biogeography 21, 998-1006. 2012
    Lee, C.-C. & Wang, C.-K. Estimating Stand Density in a Tropical Broadleaf Forest Using Airborne LiDAR Data. Forests, 9 (8), s. 475. 2018.
    Lee, S.-J., Chan, Y.-C., Komatitsch, D., Huang, B.-S., Tromp, J. Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based Upon the Spectral-Element Method and LiDAR DTM. Bulletin of the Seismological Society of America 99, 681-693. 2009.
    Lee, H., Slatton, K.C., Roth, B.E., Cropper, W.P. Adaptive Clustering of Airborne LiDAR Data to Segment Individual Tree Crowns in Managed Pine Forests. International Journal of Remote Sensing 31, 117-139, 2010.
    Lefsky, M.A., Cohen, W.B., Harding, D.J., Parker, G.G., Acker, S.A., Gower, S.T. LiDAR Remote Sensing of Above-ground Biomass in Three Biomes. Global Ecology and Biogeography 11, 393-399. 2002.
    Li, W., Guo, Q., Jakubowski, M.K., Kelly, M. A New Method for Segmenting Individual Trees from the LiDAR Point Cloud. Photogrammetric Engineering & Remote Sensing 78, 75-84. 2012.
    Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. LiDAR Remote Sensing of Forest Structure. Progress in Physical Geography: Earth and Environment, 27(1), 88-106. 2003.
    Lin, C., G. Thomson, C. S. Lo, and M. S. Yang. A Multi-Level Morphological Active Contour Algorithm for Delineating Tree Crowns in Mountainous Forest. Photogrammetric Engineering and Remote Sensing 77 (3):241-249. 2011.
    Lin, C., G. Thomson, and S. C. Popescu. An IPCC-compliant Technique for Forest Carbon Stock Assessment Using Airborne LiDAR-derived Tree Metrics and Competition Index. Remote Sensing 8 (6):528. 2016.
    Meier, P. Human computation for disaster response. In Handbook of Human Computation; Michelucci, P., Ed.; Springer: New York, NY, USA; pp. 95-104. 2013
    Mielcarek, M., Stereńczak, K., Khosravipour, A.. Testing and Evaluating Different LiDAR-Derived Canopy Height Model Generation Methods for Tree Height Estimation. International Journal of Applied Earth Observation and Geoinformation 71, 132-143, 2018.
    Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Hemmings, F.A., Leishman, M.R. Global Patterns in Plant Height. Journal of Ecology 97, 923-932. 2009.
    Næsset, E., Bjerknes, K.-O. Estimating Tree Heights and Number of Stems in Young Forest Stands Using Airborne Laser Scanner Data. Remote Sensing of Environment 78, 328-340. 2001.
    Nilsson, M., Nordkvist, K., Jonzén, J., Lindgren, N., Axensten, P., Wallerman, J., Egberth, M., Larsson, S., Nilsson, L., Eriksson, J., Olsson, H.. A Nationwide Forest Attribute Map of Sweden Predicted Using Airborne Laser Scanning Data and Field Data From The National Forest Inventory. Remote Sensing of Environment 194, 447-454, 2017.
    Pearse, G.D., Morgenroth, J., Watt, M.S., Dash, J.P.. Optimising Prediction of Forest Leaf Area Index from Discrete Airborne LiDAR. Remote Sensing of Environment 200, 220-239, 2017.
    Rahlf, J., Breidenbach, J., Solberg, S., Næsset, E., Astrup, R. Comparison of Four Types of 3D Data for Timber Volume Estimation. Remote Sensing of Environment 155, 325-333 , 2014
    Secord, J., and A. Zakhor. Tree Detection in Urban Regions Using Aerial LiDAR and Image Data. Ieee Geoscience and Remote Sensing Letters 4 (2):196-200. 2007.
    Sanchez, V. & Zakhor, A. Planar 3D modeling of building interiors from point cloud data. 2012 19th IEEE International Conference on Image Processing, 1777-1780, 2012.
    Sibona, E., Vitali, A., Meloni, F., Caffo, L., Dotta, A., Lingua, E., Motta, R., Garbarino, M.. Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy. Forests 8, 7, 2016.
    Solberg, S., Naesset, E., Bollandsas, O.M. Single Tree Segmentation Using Airborne Laser Scanner Data in a Structurally Heterogeneous Spruce Forest. Photogrammetric Engineering & Remote Sensing 72, 1369-1378, 2006.
    Spies TA, Duncan SL. eds. Old Growth in a New World: A Pacific Icon Reexamined. Island Press. Washington DC, USA. 2009.
    Strîmbu, V.F., Strîmbu, B.M. A Graph-based Segmentation Algorithm For Tree Crown Extraction Using Airborne LiDAR Data. ISPRS Journal of Photogrammetry and Remote Sensing 104, 30-43, 2015.
    Thomas, F. The World is Flat. A Brief History of The Twenty-first Century. Farrar, Straus and Giroux, New York. 2005
    Tng, D.Y.P., Williamson, G.J., Jordan, G.J., Bowman, D.M.J.S. Giant Eucalypts - Globally Unique Fire-adapted Rain-forest Trees?. New Phytologist 196, 1001-1014.. 2012.
    Utkin, A.B., Lavrov, A.V., Costa, L., Simões, F., Vilar, R. Detection of Small Forest Fires by LiDAR. Applied Physics B 74, 77-83. 2002.
    Van Leeuwen, M., Coops, N.C., Wulder, M.A. Canopy Surface Reconstruction From a LiDAR Point Cloud Using Hough Transform. Remote Sensing Letters 1, 125-132. 2010.
    Wulder, M., Niemann, K.O., Goodenough, D.G. Local Maximum Filtering for The Extraction of Tree Locations and Basal Area from High Spatial Resolution Imagery. Remote Sensing of Environment 73, 103-114. 2000.
    Wang, Y., Lehtomäki, M., Liang, X., Pyörälä, J., Kukko, A., Jaakkola, A., Liu, J., Feng, Z., Chen, R., Hyyppä, J. Is Field-measured Tree Height as Reliable as Believed - A Comparison Study of Tree Height Estimates from Field Measurement, Airborne Laser Scanning and Terrestrial Laser Scanning in a Boreal Forest. ISPRS Journal of Photogrammetry and Remote Sensing, 147, 132-145, 2019.
    You, H., Wang, T., Skidmore, A., Xing, Y.. Quantifying the Effects of Normalisation of Airborne LiDAR Intensity on Coniferous Forest Leaf Area Index Estimations. Remote Sensing 9, 163, 2017
    Zhen, Z., Quackenbush, L.J., Stehman, S.V., Zhang, L. Agent-based Region Growing for Individual Tree Crown Delineation from Airborne Laser Scanning (ALS) Data. International Journal of Remote Sensing 36, 1965-1993, 2015.
    行政院農業委員會林務局。第四次全國森林資源調查成果。2016。
    李崇誠、王驥魁、徐嘉君。科技報導 第449期,科學出版事業基金會,台北市,12-17,2019。
    林俐玲、王兆文、沈哲緯、Lin, Li-ling、Wang, Chao-wen、Shen, Che-wei。運用羅吉斯迴歸分析山坡地土地可利用限度查定分類,水土保持學報,頁277-296。2011。
    林柏維。以羅吉斯迴歸探討累積水平地震加速度對崩塌潛勢影響之研究。碩士論文,國立臺灣大學生物環境系統工程學研究所,2010。
    林莉萍。應用空載光達資料估計森林樹冠高度模型及葉面積指數。碩士論文,國立成功大學測量及空間資訊學系研究所,2013。
    徐嘉君。GeoDigital Life 空間數位生活 創刊號1,財團法人台灣地理資訊中心,台北市,46-55,2020
    陳樹群、馮智偉。應用Logistic迴歸繪製崩塌潛感圖-以濁水溪流域為例。中華水土保持學報,第36卷,第2期,頁191-201。2005。
    黃玫鈺。使用空載光達點雲資料於都市區立木偵測。碩士論文,國立成功大學測量及空間資訊學系,2018。
    詹進發。空載雷射掃瞄資料於推估樹冠高度之應用。航測及遙測學刊 10(1): 1-14. 2005。
    楊媛婷。邀全民當「找樹的人」發現全台最高樹。自由時報。2021,取自:https://news.ltn.com.tw/news/life/breakingnews/3398142

    下載圖示 校內:2023-09-24公開
    校外:2023-09-24公開
    QR CODE