| 研究生: |
胡立群 Hu, Li-Chun |
|---|---|
| 論文名稱: |
呼吸式質子交換膜燃料電池排水週期與溫度控制系統之模擬分析 Purge Cycle and Simulation of Temperature Control System Analysis for Air-Breathing PEMFC |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 呼吸式質子交換膜燃料電池 、Matlab 、燃料電池模型 、Simulink電路分析 、模糊控制 |
| 外文關鍵詞: | Air-Breathing PEMFC, Fuel Cell Model, Simulink Analysis, Fuzzy Control |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目標在透過實際燃料電池實驗與理論分析模擬其性能,進而開發最適合的燃料電池系統控制。為了解燃料電池的操作條件,透過改變排水週期與風扇控制,探討對燃料電池之性能影響。在模擬部分,本研究利用Matlab繪製燃料電池模型,並與實際的電池性能匹配,結果顯示當電流密度小於275 mA/cm2時,誤差可控制在5%以內,且利用Simulink繪製模擬電堆負載,研究燃料電池的溫度變化與變動負載系統響應狀況,減少實際使用與開發燃料電池成本。
本實驗利用樹莓派4B (Raspberry Pi 4B)當作主控板,結合周邊次系統,開發出燃料電池控制系統,包含燃料供給次系統、電池堆監控次系統與散熱次系統,為了使控制系統能夠穩定順利運作,更開發模糊控制應用至燃料電池控制中,研究結果發現模糊控制具有較佳的溫度掌握,溫度的浮動範圍可控制在12.9%以內,優於傳統控制的溫度浮動範圍高達34.4%,模糊控制可減少不必要的振盪情形發生,更能降低燃料電池的使用門檻,溫度能自動維持在理想範圍內,故更有利於應用在燃料電池控制上。
This study aims to develop the most suitable fuel cell system control by simulating fuel cell performance through practical experiments and theoretical analysis. Because the air supply and the cooling are combined in the same system in the air-breathing proton exchange membrane fuel cell (PEMFC), it has the advantage of reducing weight and volume. To understand the operating conditions of the fuel cell, the effect on the performance of the fuel cell is investigated by changing the drain cycle and fan control. In the simulation part, this study uses Matlab to build up the fuel cell model and compares with the actual cell performance. According to the result, when current density is less than 275 mA/cm2, the error can be control within 5%. This study also uses Simulink to build up the simulated circuit load, study the temperature change and response of the fuel cell system, and reduce the cost of application and development of the fuel cell system.
In this study, the Raspberry Pi 4B is used as the main control board, combined with the balance of plant, to develop a fuel cell control system. The system includes fuel supply subsystem, stack monitoring subsystem and cooling subsystem. To make the system operate stably and smoothly, the fuzzy control is introduced and applied to the fuel cell system. The experimental results show that adding the fuzzy control can manipulate the stack temperature more smoothly and continuously, its temperature variation is within 12.9%, instead of 34.4% of traditional control, which is beneficial to the application of fuel cell control.
[1] https://autos.udn.com/autos/story/7826/5813522
[2] H. Pei, J. Shen, Y. Cai, Z. Tu, Z. Liu and W. Liu, "Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure," Applied Thermal Engineering, vol.63, no.1, pp.227-233, 2014.
[3] 陳政忠, “呼吸式質子交換膜燃料電池堆散熱系統配置之研究,”國立成功大學航空太空工程學系碩士論文, , 2020.
[4] S. Chugh, C. Chaudhari, K. Sonkar, A. Sharma, G. Kapur and S. Ramakumar, "Experimental and modelling studies of low temperature PEMFC performance," International Journal of Hydrogen Energy, vol.45, no.15, pp.8866-8874, 2020.
[5] N. E. Benchouia, A. Derghal, B. Mahmah, B. Madi, L. Khochemane and E. H. Aoul, "An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell," International Journal of Hydrogen Energy, vol.40, no.39, pp.13806-13819, 2015.
[6] J. Xu, C. Zhang, R. Fan, H. Bao, Y. Wang, S. Huang, C. S. Chin and C. Li, "Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle," Energy, vol.199, pp.117495, 2020.
[7] W.-J. Zou and Y.-B. Kim, "Temperature control for a 5 kW water-cooled PEM fuel cell system for a household application," IEEE Access, vol.7, pp.144826-144835, 2019.
[8] H. Duan, C. Zhang, G. Wang, Z. Liu, X. Xie and Q. Shuai, "Experimental study of the dynamic and transient characteristics of sub-health fuel cell multi-stack systems without DC/DC," Energy, vol.238, pp.122007, 2022.
[9] K. Ou, W.-W. Yuan and Y.-B. Kim, "Development of optimal energy management for a residential fuel cell hybrid power system with heat recovery," Energy, vol.219, pp.119499, 2021.
[10] H. He, S. Quan, F. Sun and Y.-X. Wang, "Model predictive control with lifetime constraints based energy management strategy for proton exchange membrane fuel cell hybrid power systems," IEEE Transactions on Industrial Electronics, vol.67, no.10, pp.9012-9023, 2020.
[11] A. A. El-Fergany, H. M. Hasanien and A. M. Agwa, "Semi-empirical PEM fuel cells model using whale optimization algorithm," Energy Conversion and Management, vol.201, pp.112197, 2019.
[12] S. I. Seleem, H. M. Hasanien and A. A. El-Fergany, "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, vol.169, pp.117-128, 2021.
[13] A. de Ramón-Fernández, M. J. Salar-García, D. Ruiz-Fernández, J. Greenman and I. Ieropoulos, "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, vol.251, pp.113321, 2019.
[14] W. H. Tanveer, H. Rezk, A. Nassef, M. A. Abdelkareem, B. Kolosz, K. Karuppasamy, J. Aslam and S. O. Gilani, "Improving fuel cell performance via optimal parameters identification through fuzzy logic based-modeling and optimization," Energy, vol.204, pp.117976, 2020.
[15] B. Kanouni and S. Mekhilef, "Fuzzy logic MPPT control algorithm for a Proton Exchange Membrane Fuel Cells System," Algerian Journal of Renewable Energy and Sustainable Development, vol.3, no.01, pp.13-22, 2021.
[16] http://nccur.lib.nccu.edu.tw/bitstream/140.119/35740/7/25802207.pdf
[17] http://rportal.lib.ntnu.edu.tw:8080/server/api/core/bitstreams/0ed9a915-cb44-4b66-b589-0ceb0f67b54e/content
[18] http://rportal.lib.ntnu.edu.tw:8080/server/api/core/bitstreams/2f9dcd76-24aa-4404-81b7-4bc4b6c5e02b/content
[19] 洪國泰, “質子交換膜燃料電池自動學習溫度控制的方法,”國立交通大學資訊工程學系碩士論文, , 2002
[20] A. P. Sunda, "Ammonium-based protic ionic liquid doped Nafion membranes as anhydrous fuel cell electrolytes," Journal of Materials Chemistry A, vol.3, no.24, pp.12905-12912, 2015.
[21] H. Q. Nguyen and B. Shabani, "Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications," Energy Conversion and Management, vol.204, pp.112328, 2020.
[22] https://zh.wikipedia.org/zh-tw/%E7%87%83%E6%96%99%E7%94%B5%E6%B1%A0
[23] G. Zhang and S. G. Kandlikar, "A critical review of cooling techniques in proton exchange membrane fuel cell stacks," International Journal of Hydrogen Energy, vol.37, no.3, pp.2412-2429, 2012.
[24] G. Zhang, H. Yuan, Y. Wang and K. Jiao, "Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model," Applied Energy, vol.255, pp.113865, 2019.
[25] Y. Wang, D. F. R. Diaz, K. S. Chen, Z. Wang and X. C. Adroher, "Materials, technological status, and fundamentals of PEM fuel cells–a review," Materials Today, vol.32, pp.178-203, 2020.
[26] 陳震宇, 溫度與溼度對PBI/H3PO4燃料電池特性影響之研究, 國立成功大學航空太空工程學系博士論文, 2010.
[27] 陳冠宇, 呼吸式燃料電池控制系統最佳化, 國立成功大學航空太空工程學系碩士論文, 2018.
[28] T. Zeng, C. Zhang, Z. Huang, M. Li, S. H. Chan Q. Li, X. Wu, "Experimental Investigation on the Mechanism of Variable Fan Speed Control in Open Cathode PEM Fuel Cell," International Journal of Hydrogen Energy, vol.44, no.43, pp.24017-24027, 2019.
[29] Y. Devrim, H. Devrim and I. Eroglu, "Development of 500 W PEM fuel Cell Stack for Portable Power Generators," International Journal of Hydrogen Energy, vol.40, no.24, pp.7707-7719, 2015.
[30] 林正乾, 顏志安, 戴亞霖, 林易佑, "質子交換膜燃料電池發電性能最佳化實務分析," 冷凍空調與能源科技雜誌, no.65, pp.54-71, 2010.
[31] F. Khan, A. Nawaz, M. A. Muhammad and M. A. Khadim, "Review and analysis of MATLAB® Simulink model of PEM fuel cell stack," 2013.
[32] M. Schumann, C. Cosse, D. Becker, D. Vorwerk and D. Schulz, "Modeling and experimental parameterization of an electrically controllable PEM fuel cell," International Journal of Hydrogen Energy, vol.46, no.56, pp.28734-28747, 2021.
[33] 黃鎮江, 燃料電池”, 全華圖書,第四版,2017.
[34] C. Ceylan and Y. Devrim, "Design and simulation of the PV/PEM fuel cell based hybrid energy system using MATLAB/Simulink for greenhouse application," International Journal of Hydrogen Energy, vol.46, no.42, pp.22092-22106, 2021.
[35] A. Kalaiarasi, R. Prasad, and S. R. Prasath, "Performance Analysis of Fuel cell Powered Electric Vehicle Using MATLAB," in 2022 International Conference on Computer Communication and Informatics (ICCCI), IEEE, pp.1-8, 2022.
[36] S. A. Ansari, M. Khalid, K. Kamal, T. Abdul Hussain Ratlamwala, G. Hussain and M. Alkahtani, "Modeling and Simulation of a Proton Exchange Membrane Fuel Cell Alongside a Waste Heat Recovery System Based on the Organic Rankine Cycle in MATLAB/SIMULINK Environment," Sustainability, vol.13, no.3, pp.1218, 2021.
校內:2027-07-25公開