| 研究生: |
林彥廷 Lin, Yan-Ting |
|---|---|
| 論文名稱: |
以社群分析為基之產品創新預測方法與技術研發 Development of Methodology and Technology for Social Analytics-based Product Innovation Prediction |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 共同指導教授: |
陳育仁
Chen, Yuh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 社群分析 、社群媒體 、產品創新 、產品開發 |
| 外文關鍵詞: | social analytics, social media, product innovation, product development |
| 相關次數: | 點閱:157 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業經營包含許多面向,「創新」則是企業進步之動力,企業必須創新才得以在競爭環境中生存。產品創新開發前,企業須了解消費者需求,以提供消費者需要或適合之產品。傳統企業透過耗時費力的問卷調查與統計分析方式了解消費者需求。隨著網路社群媒體興起以及智慧型手機與行動網路普及,越來越多使用者會在網路社群媒體上留下對產品的想法、使用經驗和期望。然而以往利用網路社群媒體為分析對象之產品開發研究,僅能根據分析結果評價目前產品在市場上之情勢,並無法提供確切發展項目供企業參考。因此,如何從大量社群媒體資料中分析出有價值之產品重要發展項目提供產品開發與設計進而提升產品市場上競爭優勢為一重要研究課題。
本研究主要目的在針對網路社群媒體上之產品相關文章與評價內容,發展一產品創新預測機制,以協助企業迅速掌握產品發展趨勢與項目,作為產品開發時之重要參考資訊。針對上述目的,本研究之主要研究項目包括:(i)以社群分析為基之產品預測方法設計,(ii)產品創新預測方法之實現技術開發,以及(iii)以社群分析為基之產品創新預測系統實作與驗證。
Business management involves many aspects. "Innovation" is the driving force for enterprise progress. Before product innovation, companies must understand consumer needs to provide products that consumers need. Traditional companies understand consumer needs through time-consuming questionnaires and statistical analysis. With the rise of social media and the popularity of smart phones and internet, more and more users will leave their thought on products in the web social media. The product development based on social analysis can only evaluate the current situation of the product in the market, and cannot provide the exact development object for the enterprise reference. Therefore, how to analyze valuable product development objects from social media materials to provide product development and design to enhance the competitive advantage in the product market is an important issue.
Therefore, the main purpose of this research is to develop a product innovation prediction mechanism based on product-related E-WOMs to help enterprises quickly grasp product development trends and objects as an important reference for product development. For the above purposes, the main research projects of this study include: (i) designing a social analytics-based product innovation prediction methodology, (ii) developing the enabling technology of the proposed product innovation prediction method and (iii) implementing and verifying social analytic-based product innovation prediction systems.
1. Arndt, J. Role of product-related conversations in the diffusion of a new product. Journal of marketing Research, pp. 291-295, 1967.
2. Bickart, B., & Schindler, R. M. Internet forums as influential sources of consumer information. Journal of interactive marketing, 15(3), pp. 31-40, 2001.
3. Chin, K.-S., Tang, D.-W., Yang, J.-B., Wong, S. Y., & Wang, H. Assessing new product development project risk by Bayesian network with a systematic probability generation methodology. Expert Systems with Applications, 36(6), pp. 9879-9890, 2009.
4. Damanpour, F. Organizational innovation: A meta-analysis of effects of determinants and moderators. Academy of management journal, 34(3), pp. 555-590, 1991.
5. Delen, D., & Demirkan, H. Data, information and analytics as services. Decision Support Systems, 55(1), pp. 359-363, 2013.
6. Dresner, H. Business Intelligence. Gartner Inc, 1989.
7. Dresner, H. The performance management revolution: Business results through insight and action, John Wiley & Sons, 2008.
8. Efimov-Soini, N., & Uzhegov, N., The TRIZ-based tool for the electrical machine development. 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS), 2017.
9. Evanschitzky, H., Eisend, M., Calantone, R. J., & Jiang, Y. Success factors of product innovation. Journal of Product Innovation management, 29(S1), pp. 21-37, 2012.
10. Gers, F. A., & Schmidhuber, E. LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), pp. 1333-1340, 2001.
11. Goldberg, Y., & Levy, O. word2vec explained: Deriving mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.
12. Graves, A., Mohamed, A. r., & Hinton, G., Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
13. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), pp. 2222-2232, 2017.
14. Hegde, R., & Seema, S., Aspect based feature extraction and sentiment classification of review data sets using Incremental machine learning algorithm. 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 2017.
15. Hennig‐Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. Electronic word‐of‐mouth via consumer‐opinion platforms: What motivates consumers to articulate themselves on the Internet? Journal of interactive marketing, 18(1), pp. 38-52, 2004.
16. Hochreiter, S., & Schmidhuber, J. Long short-term memory. Neural computation, 9(8), pp. 1735-1780, 1997.
17. Johnson, J. D., Meyer, M. E., Berkowitz, J. M., Ethington, C. T., & Miller, V. D. Testing Two Contrasting Structural Models of Innovativeness in a Contractual Network. Human Communication Research, 24(2), pp. 320-348, 1997.
18. Kotler, P., & Armstrong, G. Principles of marketing, Pearson education, 2010.
19. Lehner, B., Widmer, G., & Bock, S., A low-latency, real-time-capable singing voice detection method with LSTM recurrent neural networks. 2015 23rd European Signal Processing Conference (EUSIPCO), 2015.
20. Li, Y., Song, W., Li, Z., & Li, Y., Innovative design of water boilers based on QFD and TRIZ. 2017 Chinese Automation Congress (CAC), 2017.
21. MBAlib., 產品創新, http://wiki.mbalib.com/zh-tw/%E4%BA%A7%E5%93%81%E5%88%9B%E6%96%B0, 2016
22. Mikolov, T. Statistical language models based on neural networks. Presentation at Google, Mountain View, 2nd April, 2012.
23. Mikolov, T., Chen, K., Corrado, G., & Dean, J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
24. Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S., Recurrent neural network based language model. Eleventh Annual Conference of the International Speech Communication Association, 2010.
25. National Digital Archives Program, T. CKIP中文斷詞系統.
26. Nie, J.-Y., Brisebois, M., & Ren, X., On Chinese text retrieval. Proceedings of the 19th annual international ACM SIGIR conference on Research and development in information retrieval, 1996.
27. Pai, M.-Y., Chu, H.-C., Wang, S.-C., & Chen, Y.-M. Electronic word of mouth analysis for service experience. Expert Systems with Applications, 40(6), pp. 1993-2006, 2013.
28. Penalver-Martinez, I., Garcia-Sanchez, F., Valencia-Garcia, R., Rodriguez-Garcia, M. A., Moreno, V., Fraga, A., & Sanchez-Cervantes, J. L. Feature-based opinion mining through ontologies. Expert Systems with Applications, 41(13), pp. 5995-6008, 2014.
29. Pride, W. M., Ferrell, O., Lukas, B. A., Schembri, S., & Niininen, O. Marketing principles, Cengage Learning, 2012.
30. Rathore, A. K., & Ilavarasan, P. V., Social media analytics for new product development: Case of a pizza. Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS), 2017 International Conference on, 2017.
31. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning representations by back-propagating errors. nature, 323(6088), pp. 533, 1986.
32. Sertsi, P., Boonkla, S., Chunwijitra, V., Kurpukdee, N., & Wutiwiwatchai, C., Robust voice activity detection based on LSTM recurrent neural networks and modulation spectrum. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2017.
33. Shirky, C. The political power of social media: Technology, the public sphere, and political change. Foreign affairs, pp. 28-41, 2011.
34. Sproat, R., & Shih, C. A statistical method for finding word boundaries in Chinese text. Computer Processing of Chinese and Oriental Languages, 4(4), pp. 336-351, 1990.
35. Stark, J. Product lifecycle management, Springer, 2015.
36. Stieglitz, S., & Dang-Xuan, L. Social media and political communication: a social media analytics framework. Social Network Analysis and Mining, 3(4), pp. 1277-1291, 2013.
37. Su, T., Shukai, J., Wang, Q., Li, S., & Ruigang, W., Novel character segmentation method for overlapped Chinese handwriting recognition based on LSTM neural networks. 2016 23rd International Conference on Pattern Recognition (ICPR), 2016.
38. Sun, L., Su, T., Liu, C., & Wang, R., Deep LSTM Networks for Online Chinese Handwriting Recognition. 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), 2016.
39. Sundermeyer, M., Schlüter, R., & Ney, H., LSTM neural networks for language modeling. Thirteenth Annual Conference of the International Speech Communication Association, 2012.
40. Tang, H., Tan, S., & Cheng, X. A survey on sentiment detection of reviews. Expert Systems with Applications, 36(7), pp. 10760-10773, 2009.
41. Tsai, C.-H. MMSEG: A word identification system for Mandarin Chinese text based on two variants of the maximum matching algorithm. Avaible on internet at http://www. geocities. com/hao510/mmseg, 2000.
42. Ulloa, D., Saleiro, P., Rossetti, R. J., & Silva, E. R., Mining social media for open innovation in transportation systems. Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International Conference on, 2016.
43. Wikipedia., Product_(business), https://en.wikipedia.org/wiki/Product_(business),
44. Wikipedia., 長短期記憶, https://zh.wikipedia.org/wiki/%E9%95%B7%E7%9F%AD%E6%9C%9F%E8%A8%98%E6%86%B6,
45. Wikipedia., 遞歸神經網絡, https://zh.wikipedia.org/wiki/%E9%80%92%E5%BD%92%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C,
46. Wilson, E. J., & Sherrell, D. L. Source effects in communication and persuasion research: A meta-analysis of effect size. Journal of the Academy of Marketing Science, 21(2), pp. 101, 1993.
47. Xiang, Z., & Gretzel, U. Role of social media in online travel information search. Tourism management, 31(2), pp. 179-188, 2010.
48. Zhai, Z., Xu, H., Kang, B., & Jia, P. Exploiting effective features for chinese sentiment classification. Expert Systems with Applications, 38(8), pp. 9139-9146, 2011.
49. Zhang, D., Xu, H., Su, Z., & Xu, Y. Chinese comments sentiment classification based on word2vec and SVMperf. Expert Systems with Applications, 42(4), pp. 1857-1863, 2015.
50. 吳俊翰. 網路資料為基之產品演化歷程挖掘與預測方法研發. [Development of Method for Web Information-based Product Evolution Process Mining and Prediction]. 資訊科學(2017年), pp. 1-51, 2017.
51. 高聖傑. 詞性組合輔助之中文網路口碑評價分析技術研發. 成功大學製造資訊與系統研究所學位論文, pp. 1-48, 2014.
52. 商業週刊. 一次看懂大數據的威力,1410期. 2014.
53. 游和正, 黃挺豪, & 陳信希. 領域相關詞彙極性分析及文件情緒分類之研究. 中文計算語言學期刊, 17(4), pp. 33-47, 2012.