| 研究生: |
林季千 Lin, Chi-Chen |
|---|---|
| 論文名稱: |
發展HER-2/neu DNA疫苗於腫瘤之治療 Development of HER-2/neu DNA Vaccine for Cancer Therapy |
| 指導教授: |
賴明德
Lai, Ming-Derg |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | HER-2/neu 、細胞激素 、DNA疫苗 、geldanamycin 、基因槍 |
| 外文關鍵詞: | gene gun, geldanamycin, DNA vaccine, Cytokine, HER-2/neu |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
HER-2/c-erbB2/neu DNA 疫苗具有抑制大量表現人類或者大鼠HER-2/neu蛋白質之老鼠腫瘤細胞生長已於動物模式被證實,然而對於HER-2/neu DNA 疫苗是否可抑制內生性表現HER-2/neu蛋白質之腫瘤細胞之生長仍不清楚。此次實驗我們首次利用HER-2/neu 之細胞外區域構築之N’-neu DNA疫苗,研究其是否能在內生性表現HER-2/neu之腫瘤動物模式中,具有抗腫瘤之能力。而從結果中發現,我們首次證實利用N’-neu DNA疫苗的確可達到有效抑制內生性表現HER-2/neu 之腫瘤生長。且此有效之作用是透過誘導HER-2/neu專一性之毒殺性CD8+ T 細胞所造成。此外此次的實驗,我們也同時利用融合之技術將N’-neu 基因融合上數種細胞激素基因,包括IL-2、IL-4、GM-CSF 評估是否能增強N’-neu DNA 疫苗誘導之抗腫瘤能力。而結果發現只有融合之N’-neu-IL-2 DNA疫苗可明顯增強N’-neu 之效果且分析其有效機制,也發現是透過增加毒殺性CD8+ T細胞之數量和活性而造成。接著,一樣的為了改善N’-neu DNA 疫苗之效力。我們此次實驗也利用合併Geldanamycin 與N’-neu 之策略,分析合併之治療效果於此次的腫瘤模式。而從結果中可發現,當利用低劑量之geldanamycin(2.5 �g)的確可提昇N’-neu 對抗腫瘤之能力,然而在高劑量時(10�g) 卻反而有抑制N’-neu 誘導之抗腫瘤免疫能力。而分析造成有效之機制結果證實, geldanamycin 是透過將HER-2/neu 蛋白質之降解而增加腫瘤的抗原性,因而導致經由N’-neu誘導之專一性毒殺CD8+ T細胞增加認識而毒殺腫瘤細胞之機會。最後,為改善N’-neu DNA疫苗之抗腫瘤能力,我們也試著利用不同方式投遞DNA之策略來評估。而從結果中我們發現到,當利用基因槍投遞不含有金粒子之裸露DNA疫苗比較利用肌肉注射疫苗之具有更好之治療效果,而推論其結果可能也與此治療方式提昇CD8+T細胞之活性相關。
The therapeutic efficacy of HER2/c-erbB-2/neu DNA immunization on mouse tumor cells expressing exogenous human or rat HER-2/neu but not on mouse tumor cells naturally expressing mouse HER-2/neu has been demonstrated. We investigated the feasibility of using N-terminal rat HER-2/neu DNA immunization on mouse tumors overexpressing endogenous HER-2/neu and enhancing the therapeutic efficacy of this vaccine by fusion to various cytokine genes, including interleukin-2(IL-2), interleukin-4(IL-4), or granulocyte–macrophage colony-stimulating factor. In a therapeutic model, N’-neu-IL-2 DNA was significantly better than N′-neu DNA vaccine and the therapeutic efficacy of DNA vaccines was correlated with tumor infiltration of CD8+ T cells. To further enhance the efficacy of DNA vaccine, we investigated the therapeutic effect of the combination of geldanamycin and N′-neu DNA vaccine against Hsp90 clients HER-2/neu protein. The efficacy of various doses of geldanamyc in N’-neu DNA vaccine was investigated in a tumor constitutively overexpressing endogenous HER-2/neu. Low-dose(2.5 �g), but not high-dose(10 �g), geldanamycin had an enhancing effect with N’-neu DNA vaccine on the inhibition of MBT-2 tumors in syngeneic C3H mice. Anti-HER-2/neu antibody titers were similar among all treated groups. Significant increased infiltrations of CD8+ T cells were observed at tumor sites. Geldanamycin sensitized tumor cells to the cytotoxic effects of lymphocytes. Furthermore, to enhance the efficacy of DNA vaccine, we also investigated the therapeutic effects of different procedures of DNA vaccine delivery. The results indicated that delivery of naked N’-neu DNA using gene gun showed better therapeutic efficacy than that using intramuscular injection. The therapeutic effect was correlated with increased CD8+ T cell activity.
1.Schechter AL, Stern DF, Vaidyanathan L, Decker SJ, Drebin JA, and Greene MI, and Weinberg RA. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature, Dec, 312: 513-516, 1984.
2.Brandt-Rauf PW, and Pincus MR, Carney WP. The c-erbB-2 protein in oncogenesis: molecular structure to molecular epidemiology. Crit Rev Oncog, 5: 313-329, 1994.
3.Zhou BP, Li Y, and Hung MC. HER-2/Neu signaling and therapeutic approaches in breast cancer. Breast Dis, 15: 13-24, 2002.
4.Casalini P, Iorio MV, Galmozzi E, and Menard S. Role of HER receptors family in development and differentiation. J Cell Physiol, 200: 343-350, 2004.
5.Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, and Ullrich A et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science, 244: 707-712, 1989.
6.Underwood M, Bartlett J, Reeves J, Gardiner DS, Scott R, and Cooket T. C-erbB-2 gene amplification: a molecular marker in recurrent bladder tumors? Cancer Res, 55: 2422-2230, 1995.
7.Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, and Cheever MA. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol, 15: 3363-3367, 1997.
8.Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B, Jeschke M, Lydon N, McGlynn E, and Livingston RB. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res, 54: 16-20, 1994.
9.Pupa SM, Menard S, Andreola S, and Colnaghi MI. Antibody response against the c-erbB-2 oncoprotein in breast carcinoma patients. Cancer Res, 53: 5864-5866, 1993.
10.Hung MC, and Wang SC. Suppressing HER2/neu-mediated cell transformation by transcriptional repressors. Breast Dis, 11: 133-144, 2000.
11.Ueno NT, Bartholomeusz C, Xia W, Anklesaria P, Bruckheimer EM, Mebel E, Paul R, Li S, Yo GH, Huang L, and Hun MC. Systemic gene therapy in human xenograft tumor models by liposomal delivery of the E1A gene. Cancer Res, 62: 6712-6716, 2002.
12.Madhusudan S, Tamir A, Bates N, Flanagan E, Gore ME, Barton DP, Harper P, Seckl M, Thomas H, Lemoine NR, Charnock M, Habib NA, Lechler R, Nicholls J, Pignatelli M, and Ganesan TS. A multicenter Phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res, 10: 2986-2996, 2004.
13.Hortobagyi GN, Ueno NT, Xia W, Zhang S, Wolf JK, Putnam JB, Weiden PL, Willey JS, Carey M, Branham DL, Payne JY, Tucker SD, Bartholomeusz C, Kilbourn RG, De Jager RL, Sneige N, Katz RL, Anklesaria P, Ibrahim NK, Murray JL, Theriault RL, Valero V, Gershenson DM, Bevers MW, Huang L, Lopez-Berestein G, and Hung MC. Cationic liposome-mediated E1A gene transfer to human breast and ovarian cancer cells and its biologic effects: a phase I clinical trial. J Clin Oncol, 19: 3422-3233, 2001.
14.Agus DB, Scher HI, Higgins B, Fox WD, Heller G, Fazzari M, Cordon-Cardo C, and Golde DW. Response of prostate cancer to anti-Her-2/neu antibody in androgen-dependent and -independent human xenograft models. Cancer Res, 59: 4761-4764, 1999.
15.Kim KM, Shin EY, Moon JH, Heo TH, Lee JY, Chung Y, Lee YJ, Cho HM, Shin SU, and Kang CY. Both the epitope specificity and isotype are important in the antitumor effect of monoclonal antibodies against Her-2/neu antigen. Int J Cancer, 102: 428-434, 2002.
16.Plosker GL, and Keam SJ. Trastuzumab: a review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Drugs, 66: 449-475, 2006.
17.Toi M, Horiguchi K, Bando H, Saji S, and Chow LW. Trastuzumab: updates and future issues. Cancer Chemother Pharmacol, 56: 94-99, 2005.
18.Chen SA, Tsai MH, Wu FT, Hsiang A, Chen YL, Lei HY, Tzai TS, Leung HW, Jin YT, Hsieh CL, Hwang LH, and Lai MD. Induction of antitumor immunity with combination of HER2/neu DNA vaccine and interleukin 2 gene-modified tumor vaccine. Clin Cancer Res, 6: 4381-4388, 2000.
19.Dakappagari NK, Douglas DB, Triozzi PL, Stevens VC, and Kaumaya PT. Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Res, 60: 3782-3789, 2000.
20.Quaglino E, Iezzi M, Mastini C, Amici A, Pericle F, Di Carlo E, Pupa SM, De Giovanni C, Spadaro M, Curcio C, Lollini PL, Musiani P, Forni G, and Cavallo F. Electroporated DNA vaccine clears away multifocal mammary carcinomas in her-2/neu transgenic mice. Cancer Res, 64: 2858-2864, 2004.
21.Curcio C, Di Carlo E, Clynes R, Smyth MJ, Boggio K, Quaglino E, Spadaro M, Colombo MP, Amici A, Lollini PL, Musiani P, and Forni G. Nonredundant roles of antibody, cytokines, and perforin in the eradication of established Her-2/neu carcinomas. J Clin Invest, 111: 1162-1170, 2003.
22.Shaw DR and Strong TV. DNA vaccines for cancer. Front Biosci, 11: 1189-1198, 2006.
23.Yu M and Finn OJ. DNA vaccines for cancer too.
Cancer Immunol Immunothe., 55: 119-130, 2006.
24.Smorlesi A, Papalini F, Amici A, Orlando F, Pierpaoli S, Mancini C, and Provinciali M. Evaluation of different plasmid DNA delivery systems for immunization against HER2/neu in a transgenic murine model of mammary carcinoma. Vaccine, 24: 1766-1775, 2006.
25.Disis ML, Scholler N, Dahlin A, Pullman J, Knutson KL, Hellstrom KE, and Hellstrom I. Plasmid-based vaccines encoding rat neu and immune stimulatory molecules can elicit rat neu-specific immunity. Mol Cancer Ther, 10: 995-1002, 2003.
26.Amici A, Smorlesi A, Noce G, Santoni G, Cappelletti P, Capparuccia L, Coppari R, Lucciarini R, Petrelli C, and Provinciali M. DNA vaccination with full-length or truncated neu induces protective immunity against the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Gene Ther, 7: 703-706, 2000.
27.Connor J, Bannerji R, Saito S, Heston W, Fair W, and Gilboa E. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J Exp Med, 177: 1127-1134, 1993.
28.Li Y, Subjeck J, Yang G, Repasky E, and Wang XY. Generation of anti-tumor immunity using mammalian heat shock protein 70 DNA vaccines for cancer immunotherapy. Vaccine, 24: 5360-5370, 2006.
29.An LL, Yang YH, Ma XT, Lin YM, Li G, Song YH, and Wu KF. LL-37 enhances adaptive antitumor immune response in a murine model when genetically fused with M-CSFR (J6-1) DNA vaccine. Leuk Res, 29: 535-543, 2005.
30.Chow YH, Huang WL, Chi WK, Chu YD, and Tao MH. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2. J Virol, 71: 169-178, 1997.
31.Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, and Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell, 60: 397-403, 1990.
32.Chow YH, Chiang BL, Lee YL, Chi WK, Lin WC, Chen YT, and Tao MH. T. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J Immunol, 160: 1320-1329, 1998.
33.Hossmann KA, and Buschmann IR. Granulocyte-macrophage colony- stimulating factor as an arteriogenic factor in the treatment of ischaemic stroke. Expert Opin Biol Ther, 5: 1547-1556, 2005.
34.Neckers L, and Neckers K. Heat-shock protein 90 inhibitors as novel cancer chemotherapeutics. Expert Opin Emerg Drugs, 10: 137-149, 2005.
35.Workman P. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med, 10: 47-51, 2004.
36.Zhang H, Chung D, Yang YC, Neely L, Tsurumoto S, Fan J, Zhang L, Biamonte M, Brekken J, Lundgren K, and Burrows F. Identification of new biomarkers for clinical trials of Hsp90 inhibitors. Mol Cancer Ther, 5: 1256-1264, 2006.
37.Kloetzel PM. The proteasome and MHC class I antigen processing. Biochim Biophys Acta, 1-3: 225-233, 2004.
38.Kloetzel PM, and Ossendorp F. Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol, 16: 76-81, 2004.
39.Miyata Y. Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des, 11: 1131-1138, 2005.
40.Tikhomirov O, and Carpenter G. Identification of ErbB-2 kinase domain motifs required for geldanamycin-induced degradation. Cancer Res, 63: 39-43, 2003.
41.Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, DiPetrillo TA, Wazer DE, Band V, and Band H. ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem, 278: 13829-13837, 2003.
42.Castilleja A, Ward NE, O'Brian CA, Swearingen B 2nd, Swan E, Gillogly MA, Murray JL, Kudelka AP, Gershenson DM, and Ioannides CG. Accelerated HER-2 degradation enhances ovarian tumor recognition by CTL. Implications for tumor immunogenicity. Mol Cell Biochem, 217: 21-33, 2001.
43.van Drunen Littel-van den Hurk S, Babiuk SL, and LA., B. Strategies for improved formulation and delivery of DNA vaccines to veterinary target species. Immunol Rev, 199: 113-125, 2004.
44.Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF, and Wu TC. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res, 65: 309-316, 2005.
45.Peachman KK, Rao M, and Alving CR. Immunization with DNA through the skin. Methods, 31: 232-242, 2003.
46.Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, and Wu TC. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine, 21: 4036-4042, 2003.
47.Weiss R, Scheiblhofer S, Freund J, Ferreira F, Livey I, and Thalhamer J. Gene gun bombardment with gold particles displays a particular Th2-promoting signal that over-rules the Th1-inducing effect of immunostimulatory CpG motifs in DNA vaccines. Vaccine, 20: 3148-3154, 2002.
48.Zhou X, Zheng L, Liu L, Xiang L, and Yuan Z. T helper 2 immunity to hepatitis B surface antigen primed by gene-gun-mediated DNA vaccination can be shifted towards T helper 1 immunity by codelivery of CpG motif-containing oligodeoxynucleotides. Scand J Immunol., 58: 350-357, 2003.
49.Herrmann F, Lehr HA, Drexler I, Sutter G, Hengstler J, Wollscheid U, and Seliger B. HER-2/neu-mediated regulation of components of the MHC class I antigen-processing pathway. Cancer Res, 64: 215-220, 2004.
50.Lollini PL, Nicoletti G, Landuzzi L, De Giovanni C, Rossi I, Di Carlo E, Musiani P, Muller WJ, and Nanni P. Down regulation of major histocompatibility complex class I expression in mammary carcinoma of HER-2/neu transgenic mice. Int J Cancer, 77: 937-941, 1998.
51.Shen HY, He JC, Wang Y, Huang QY, and Chen JF. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem, 280 : 39962-39969, 2005.
52.McLean PJ, Klucken J, Shin Y, and Hyman BT. Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun, 321: 665-669, 2004.
53.Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, and Melani C. Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res, 64: 1502-1508, 2004.
54.Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA, and Multhoff G. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones, 8: 348-360, 2003.
55.Ikeda H, Chamoto K, Tsuji T, Suzuki Y, Wakita D, Takeshima T, and Nishimura T. The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci, 95: 697-703, 2004.
56.Hallett WH, Murphy WJ. Natural killer cells: biology and clinical use in cancer therapy. Cell Mol Immunol, 1: 12-21, 2004.
57.Serre K, Giraudo L, Siret C, Leserman L, and Machy P. CD4 T cell help is required for primary CD8 T cell responses to vesicular antigen delivered to dendritic cells in vivo. Eur J Immunol, 36: 1386-1397, 2006.
58.Bluestone JA, and Tang Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr Opin Immunol, 17: 638-642, 2005.
59.Nagai H, Horikawa T, Hara I, Fukunaga A, Oniki S, Oka M, Nishigori C, and Ichihashi M. In vivo elimination of CD25+ regulatory T cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp Dermatol, 13: 613-620, 2004.
60.Steitz J, Bruck J, Lenz J, Knop J, and Tuting T. Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res, 24: 8643-8646, 2001.
61.Kim KM, Shin EY, Moon JH, Heo TH, Lee JY, Chung Y, Lee YJ, Cho HM, Shin SU, and Kang CY. Both the epitope specificity and isotype are important in the antitumor effect of monoclonal antibodies against Her-2/neu antigen. Int J Cancer, 102: 428-434, 2002.
62.Willems A, Gauger K, Henrichs C, and Harbeck N. Antibody therapy for breast cancer. Anticancer Res, 25: 1483-1489, 2005.
63.Lipton A, Ali SM, Leitzel K, Demers L, Chinchilli V, Engle L, Harvey HA, Brady C, Nalin CM, Dugan M, Carney W, and Allard J. Elevated serum Her-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol, 20: 1467-1472, 2002.
64.Muller V, Witzel I, Luck HJ, Kohler G, von Minckwitz G, Mobus V, Sattler D, Wilczak W, Loning T, Janicke F, Pantel K, and Thomssen C. Prognostic and predictive impact of the HER-2/ neu extracellular domain (ECD) in the serum of patients treated with chemotherapy for metastatic breast cancer. Breast Cancer Res Treat, 86: 9-18, 2004.
65.Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, Bourguignon L, and Hung MC. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol, 3: 802-808, 2001.
66.Nelson BH. IL-2, regulatory T cells, and tolerance. J Immunol, 172: 3983-3988, 2004.
67.Matsuzaki J, Tsuji T, Imazeki I, Ikeda H, and Nishimura T. Immunosteroid as a regulator for Th1/Th2 balance: its possible role in autoimmune diseases. Autoimmunity, 38: 369-375, 2005.
68.Yorgin PD, Hartson SD, Fellah AM, Scroggins BT, Huang W, Katsanis E, Couchman JM, Matts RL, and Whitesell L. Effects of geldanamycin, a heat-shock protein 90-binding agent, on T cell function and T cell nonreceptor protein tyrosine kinases. J Immunol, 164: 2915-2923, 2000.
69.Schnaider T, Somogyi J, Csermely P, and Szamel M. The Hsp90-specific inhibitor geldanamycin selectively disrupts kinase-mediated signaling events of T-lymphocyte activation. Cell Stress Chaperones, 5: 52-61, 2000.
70.Sausville EA. Geldanamycin analogs. J Chemother, 16: 68-69, 2004.
71.Georgakis GV, and Younes A. Heat-shock protein 90 inhibitors in cancer therapy: 17AAG and beyond. Future Oncol, 1: 273-281, 2005.
72.Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L, Ronchese F, and Romani N. Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A, 103: 7783-7788, 2006
73.Zanoni I, Foti M, Ricciardi-Castagnoli P, and Granucci F. TLR-dependent activation stimuli associated with Th1 responses confer NK cell stimulatory capacity to mouse dendritic cells. J Immunol, 175, 286-92, 2005.