研究生: |
張又仁 Chang, Yu-Jen |
---|---|
論文名稱: |
雷射輔助奈米壓印製程應用於半導體薄膜材料的研究 The Study of the Laser-assisted Direct Imprinting Fabrication on Semiconductor Thin Films |
指導教授: |
劉全璞
Liu, Chuan-Pu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 微機電系統工程研究所 Institute of Micro-Electro-Mechancial-System Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 雷射退火 、奈米壓印 、半導體薄膜 |
外文關鍵詞: | laser annealing, LADI, semiconductor thin films |
相關次數: | 點閱:85 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米科技的快速成長及應用商品化,於是需要一種具有成本低廉及適合量產的技術。雷射輔助式奈米壓印技術正是具有這樣特性的製程。因此,就半導體薄膜材料而言,建立最佳化的雷射輔助式壓印製程參數就是極為重要的工作。這正是這篇論文的重點之一。
此外,在實驗的過程中,意外發現一些特殊奈米結構。這些結構包括有奈米島(nano-islands)、波狀物(ripples)、規則性矩形陣列(quasi-regular square array)及週期性圖案(periodic patterns)。甚至隨著控制單一變因的量變化,可觀察其對應的結構變化。藉由這樣的系統實驗,我們嘗試推測其可能成因,以建立合理的模型。這些特殊奈米結構的成因必須考慮應力分佈、溫度分佈、流體行為及材料特性。應力分佈占有重要的影響,其來源包括有異質結構、薄膜內應力、雷射造成的熱應力及外部施加的正向力。最後再藉由一連串的材料分析,觀察這些特殊奈米結構表面形貌及材料組成,做為佐證。
The field of nano-technology is advancing rapidly. For high-throughput and low-cost lithography, Nano-imprinting technologies have been developed. Hence, we want to establish parameters for the laser-assisted direct imprinting fabrication on semiconductor thin films. In our experiment, we found several special structures by accident. These special structures comprise nano-islands、ripples、quasi-regular square array and periodic patterns. Feasible explanations of the laser-induced nano-structures in the surface morphologies of thin films are deduced by controllable variables. The model takes into account the strain effect which is caused by the thickness of the thin film、the lattice mismatch of hetero-structures、the laser irradiation and the imprinting pressure. We have demonstrated surface morphologies of imprinting results by SEM and AFM. Finally, the variations of material structures were also demonstrated with XRD、Raman.
[01] A. G. Cullis, H.C. Webber, and N.G. Chew, “Ultra-fast melting and solidification behavior of amorphous and crystalline silicon”, Materials Research Society Symposia Proceedings, 23, p105-110 (1984).
[02] A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching”, Appl. Phys. Lett., 63, p2002-2004 (1993).
[03] A. W. Szyszko, “Melting and diffusion under nanosecond laser pulse”, Applied Surface Science, 90, p325-331 (1995).
[04] A. Shih, C. Y. Meng, S. C. Lee, and M. Y. Chern, “Mechanism for pillar-shaped surface morphology of poly-silicon prepared by excimer laser annealing”, J. Appl. Phys., Vol. 88, No. 6, p3725-3733 (2000).
[05] A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon”, J. Appl. Phys., 97, 114305 (2005).
[06] C. P. Grigoropoulos, S. Moon, M. Lee, M. Hatano1, and K. Suzuki, “Thermal transport inmelting and recrystallization of amorphous and polycrystalline Si thin films”, Appl. Phys. A, 69, S295–S298 (1999).
[07] C. R. K. Marrian and D. M. Tennant, “Nanofabrication”, J. Vac. Sci. Technol. A, 21, S207-S215 (2003).
[08] C. Eisele, M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel, and M. Stutzmann, “Laser-crystallized microcrystalline SiGe alloys for thin film solar cells”, Thin Solid Films, 427, p176–180 (2003).
[09] D. K. Fork, G. B. Anderson, J. B. Boyce, R. I. Johnson, and P. Mei, “Capillary waves in pulsed excimer laser crystallized amorphous silicon”, Appl. Phys. Lett. 68 (15), p2138-2140 (1996).
[10] E. P. Donovan, F. Spaepen, D. Turnbull, J. M. Poate, and D. C. Jacobson, “Calorimetric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion implantation”, J. Appl. Phys., 57, p1795-1804 (1985).
[11] E. Fogarassy, S. de Unamuno, P. Legagneux, F. Plais, D. Pribat, B. Godard, and M. Stehle, “Surface melt dynamics and super lateral growth regime in long pulse duration excimer laser crystallization of amorphous Si films”, Thin Solid Films, 337, p143-147 (1999).
[12] F. Gottschalch, T. Hoffmann, C. M. S. Torres, H. Schulz, and H. C. Scheer, “Polymer issues in nanoimprinting technique”, Solid-State Electronics, 43, p1079-1083 (1999).
[13] F. C. Voogt, R. Ishihara, and F. D. Tichelaar, “Melting and crystallization behavior of low-pressure chemical-vapor-deposition amorphous Si films during excimer-laser annealing”, J. Appl. Phys., 95, p2873-2879 (2004).
[14] I. Asai, N. Kato, M. Fuse, and T. Hamano, “Poly-Silicon Thin-Film Transistors with Uniform Performance Fabricated by Excimer Laser Annealing” , Jpn. J. Appl. Phys., Part 1, 32, p474-481 (1993).
[15] I. C. Hsieh, S. Y. Lien, and D. S. Wu, “Transformation of microcrystalline silicon films by excimer-laser-induced crystallization”, Thin Solid Films, 473, p169– 175 (2005).
[16] J. E. Sipe, J. F. Young, J. S. Preston, and H. M. V. Driel, “Laser-induced periodic surface structure. I. Theory”, Phys. Revi. B, 27, p1141-1154 (1983).
[17] J. F. Young, J. S. Preston, H. M. V. Driel, and J. E. Sipe, “Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass”, Phys. Revi. B, 27, p1155-1172 (1983).
[18] J. F. Young, J. E. Sipe, and H. M. V. Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium”, Phys. Revi. B, 30, p2001-2015 (1984).
[19] J. Solis and C. N. Afonso, “Selectivity and transmission of amorphous thin films at the melting temperature”, J. Appl. Phys., 72 (6), p2125-2130 (1992).
[20] J. S. Im, H. J. Kim, and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films”, Appl. Phys. Lett., 63, p1969-1971 (1993).
[21] J. Haisma, M. Verheijen, and K. V. D. Heuvel, “Mold-assisted nanolithography: A process for reliable pattern replication”, J. Vac. Sci. Technol. B, 14, p 4124-4128 (1996).
[22] K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. S. Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H. C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting”, Microelectronic Engineering, 61–62, p393–398 (2002).
[23] M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, “Melting Temperature and Explosive Crystallization of Amorphous Silicon during Pulsed Laser Irradiation”, Phys. Rev. Lett., 52, p2360-2364 (1984).
[24] M. Hatano, S. Moon, M. Lee, K. Suzuki, and C. P. Grigoropoulos, “In situ and ex situ diagnostics on melting and resolidification dynamics of amorphous and polycrystalline silicon thin films during excimer laser annealing”, Journal of Non-Crystalline Solids 266, 269, p654-658 (2000).
[25] M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature”, Appl. Phys. Lett., 76, p673-675 (2000).
[26] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, Appl. Phys. Lett., 84, p5299-5301 (2004).
[27] M. Bender, U. Plachetka, J. Ran, A. Fuchs, B. Vratzov, H. Kurz, T. Glinsner, and F. Lindner, “High resolution lithography with PDMS molds”, J. Vac. Sci. Technol. B 22(6), p3229-3232 (2004).
[28] M. Weizman, N. H. Nickel, I. Sieber, W. Bohne, J. Rfhrich, E. Strub, and B. Yan, “Phase segregation in laser crystallized polycrystalline SiGe thin films”, Thin Solid Films, 487, p72–76 (2005).
[29] P. H. Tan, K. Brunner, D. Bougeard, and G. Abstreiter, “Raman characterization of strain and composition in small-sized self-assembled Si/Ge dots”, Phys. Revi. B, 68, p125302 (2003)
[30] Q. Xia, C. Keimel, H. Ge, Z. Yu, W. Wu, and S. Y. Chou, “Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography”, Appl. Phys. Lett., Vol. 83, No. 21, p4417-4419 (2003).
[31] S. R. Stiffler, M. O. Thompson, and P. S. Peercy, “Supercooling and Nucleation of Silicon after Laser Melting”, Phys. Rev. Lett., 60, p2519-2523 (1988).
[32] S. A. Wode, K. Dettmer, and F. R. Kessler, “Transformation of amorphous Si0.9Ge0.l and Si films by laser annealing”, Thin Solid Films, 266, p78-82 (1995).
[33] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett., 67, p3114-3116 (1995).
[34] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B, 15, p2897-2904 (1997).
[35] S. Horita, Y. Nakata, and A. Shimoyama, “Alignment of grain boundary in a Si film crystallized by a linearly polarized laser beam on a glass substrate”, Appl. Phys. Lett., Vol. 78, No. 15, p2250-2252 (2001).
[36] S. Nakashima, T. Mitani, M. Ninomiya, and K. Matsumoto, “Raman investigation of strain in Si/SiGe heterostructures: Precise determination of the strain-shift coefficient of Si bands”, J. Appl. Phys., 99, 053512 (2006)
[37]T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Wilson, ibid. 18, 3572 (2000).
[38] T. Sameshima, H. Watakabe, H. Kanno, T. Sadoh, and M. Miyao, “Pulsed laser crystallization of silicon–germanium films”, Thin Solid Films, 487, p67–71 (2005).
[39] W. Pan, K. Fujiwara, N. Usami, T. Ujihara, K. Nakajima, and R. Shimokawa, “Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution”, J. Appl. Phys., 96, No. 2, p1238–1241 (2004).
[40] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronic”, Appl. Phys.Lett., 81, p562-564 (2002).
[41] Y. Lu, D. B. Shao, and S. C. Chen, “Laser-assisted photothermal imprinting of nanocomposite”, Appl. Phys. Lett., Vol. 85, No. 9, p1604-1608 (2004).
[42] Y. Liang, W. D. Nix, P. B. Griffin, and J. D. Plummer, “Critical thickness enhancement of epitaxial SiGe films grown on small structures”, J. Appl. Phys., 97, 043519 (2005)