簡易檢索 / 詳目顯示

研究生: 陳宏斌
Chen, Hong-Bin
論文名稱: 不同能階之雙量子點間的延遲效應
Effect of Retardation on the Radiative Decay of Two Quantum Dots with Different Level
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 43
中文關鍵詞: 延遲
外文關鍵詞: retardaiton
相關次數: 點閱:58下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在輻射場的量子論的領域中,延遲效應是一個相當典型的問題。該效應討論在兩原子的系統中,能量以電磁輻射的方式傳遞並且產生時間延遲。在本文中,我們首先將兩個量子點至於三維的真空中並討論該系統的延遲效應。但由於該系統偶合到真空中無限多的輻射模式,因此該系統的延遲效應相當微弱。為了增強延遲效應的效果,我們將該雙量子點系統偶合到在一維金屬奈米導線傳遞的表面電漿場。最後我們將會發現,當某些特定條件滿足時,量子點的機率分佈最後不但不會完全衰退,而會收斂到一個固定的值。

    The retardation effect is one of the classic problems in quantum theory of radiation which consider the delay of the energy transfer in terms of electromagnetic radiation between two atomic systems. In this thesis, we investigate the retardation effect between two quantum dots. In the case of 3-dimensional system, since the dots couple to infinitely many radiation modes in vacuum, the retardation effect is very weak. For the purpose of enhancing the retardation effect, we couple the two quantum dots to the surface plasmon modes propagating along a metal nanowire. Finally we find that when some conditions are fulfilled, an interesting phenomenon can occur: instead of decay to zero, the occupation probabilities of the QDs saturate to a non-vanishing value.

    1. Introduction 1 2. Formalism 6 3. Results and Discussions 3-1 General Properties 12 3-2 3-Dimensional Δm=0 Transition 13 3-3 3-Dimensional Δm=±1 Transition 18 3-4 1-Dimensional Transition 22 4. Summary and Further Works 27 Appendix A Derivation of Eq. (2.22) and Eq. (2.23) 28 Appendix B Derivation of Eq. (2.18) and Eq. (2.19) for Different Scenarios 30 Appendix C Derivation of Eq. (2.20) and Eq. (2.21) for Different Scenarios 32 Appendix D Derivation of Eq. (2.33) 37 Appendix E Derivation of Eq. (2.40) 39 Appendix F Review of No-retardation Result ..........................................................41

    [1] P. A. M. Dirac, Proc. Roy. Soc. A114, 243 (1927). (General theory); Proc. Roy. Soc. A144, 710 (1927) (Dispersion).
    [2] E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
    [3] V. F. Weisskopf and E. Wigner, Z. Phys. 63, 54 ( 1930); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997), Sec 6.3.
    [4] W. H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill, New York, 1964), pp. 191-197; G. Kallen, Encyclopedia of Physics, Edited by S. Flugge (Springer, Berlin, 1958), Vol. I., pp. 274-279.
    [5] S. Kikuchi, Z. Phys. 66, 558 (1930); G. Breit, ibid. 5, 91 (1933); G. Wentzel, Handbuch der Physik, edited by H. Geiger and Karl Scheel (Springer, Berlin, 1933), Vol. XXIV, p. 761.
    [6] P. W. Milonni and P. L. Knight, Phys. Rev. A 10, 1096 (1974).
    [7] G. Albert, Phys. Rev. A 46, R5338 (1992).
    [8] F. Dubin, D. Rotter, M. Mukherjee, C. Russo, J. Eschner, and R. Blatt, Phys. Rev. Lett. 98, 183003 (2007)
    [9] R. Zia and M. L. Brongersma, Nature Nanotechnology 2, 426 (2007).
    [10] R. Zia, J. A. Schuller, and M. L. Brongersma, Phys. Rev. B 74, 165415 (2006).
    [11] R. Ziz, A. Chandran, and M. L. Brongersma, Opt. Lett. 30, 1473-1475 (2005).
    [12] W. L. Barnes, A. Dereus, and T. W. Ebbessen, Nature 424,824 (2003).
    [13] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
    [14] D. K. Gramotnev, and D. F. P. Pile, Appl. Phys. Lett. 85, 6323 (2004).
    [15] D. F. P. Pile, and D. K. Gramotnev, Opt. Lett. 29, 1069 (2004).
    [16] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J, Laluet, and T. W. Ebbessen, Nature 440, 508 (2006).
    [17] D. Pacifici, H. J. Lezec, and H. A. Atwater, Nature Photonics 1, 402 (2007).
    [18] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006).
    [19] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 06230 (2007).
    [20] C. J. M. Smith, H. Benisty, S. Olivier, M. Rattire, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdre, and U. Oesterle, Appl. Phys. Lett. 77, 2813 (2000); M. V. Kotlyar, T. Karle, M. D. Settle, L. O’Faolain, and T. F. Krauss, Appl. Phys. Lett. 84, 3588 (2004).

    下載圖示 校內:立即公開
    校外:2008-08-20公開
    QR CODE