| 研究生: |
張洲滄 Chang, Chou-Tsang |
|---|---|
| 論文名稱: |
臺中市都會區建築及交通碳排放量之研究 Carbon dioxide emissions evaluation in building and traffic sectors in the Taichung metropolitan area |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 碳排放量 、都市政策 、都市設計 、建築設計 |
| 外文關鍵詞: | carbon dioxide, urban policy, urban design, building design |
| 相關次數: | 點閱:149 下載:48 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從工業革命開始後,全球CO2含量逐年且持續升高,特別是都市整體的耗能導致產生極高的CO2排放量。本研究分析過去的相關研究後,以臺中都會區為研究對象,區分為建築、交通及綠化碳匯等多尺度的評估項目,並經統計數值資料及都市空間資訊後,建立得到都市整體碳收支地圖。
本研究首先於交通尺度方面,將重要道路交叉口其整天交通量,進行統計解析後,得到主要道路路口於24小時內該路口總小客車當量之推測公式。再以16個街廓之各尖峰交通量調查資料,求得全年交通量所產生總二氧化碳排放量。建築尺度方面,以十年的建築許可相關審議的資料,彙整與應用細部資料加以修正後,再依各土地使用分區與其耗能密度關係,進行完整的耗能解析。
本研究結果發現,都市年平均碳排放量占比分別為建築碳排放量為67.6%、交通碳排放量為30.5%及碳匯吸收量 1.9%。本研究採用多變數複迴歸模型統計,其建築物每一總樓地板面積,產生每年於建築使用階段總碳排放量為16.51 tCO2/㎡·yr。本研究再深入整理市政府未來的行政執行政策,以務實地設定三種不同執行階段的未來情境模擬後,以高解析度網格呈現出多尺度的碳收支成果外,更有助於政府機關訂定後續優先減碳策略方式及都市碳中和之政策。
This research reviewed the relevant literature, then adopted the Taichung metropolitan area as the research target and assessed carbon emissions with respect to buildings, traffic, and carbon sinks. The total CO2 emissions generated by the traffic volume in the entire year is calculated according to the investigation data of peak traffic hours within 16 blocks and the influential factors of the development scale of 95 buildings are counted.
This research found that there is a passenger car unit of 4.72 generated in each square meter of land in the urban block every day, 0.99 in each square meter of floor area in the building and the average annual total CO2 emissions generated by the traffic of each square meter of floor area in the building is 12.97 kgCO2/yr. The results of this research indicated that the annual average urban carbon emissions consist of 67.6% building carbon emissions, 30.5% traffic carbon emissions, and 1.9% carbon sink absorption. In this research, a multiple regression model was used to calculate the floor area of each building. This research also determined that densely populated areas emitted higher levels of carbon than less populated areas. For every square meter of total floor area, 16.51 tCO2/m2·yr of carbon were emitted from buildings every year. Recommended policies for the city government to implement in the future were organized and used to establish three simulation scenarios of the various implementation stages.
In addition, the high-resolution grid was used to present the multi-scale carbon budget results, which helps government agencies to formulate follow-up priority carbon reduction strategies and urban carbon neutral policies.
中文文獻:
1.王仁俊, (2005). 住宅街廓用電之研究, 博士論文, 建築研究所, 國立成功大學.
2.王珮琪, (2005). 以二氧化碳減量觀點探討都市計畫綠化管制策略, 碩士論文, 建築與都市設計研究所, 國立臺北科技大學.
3.甘知潔, (2009). 都市街廓用電預測方法之研究, 碩士論文, 建築研究所, 國立成功大學.
4.任超、吳恩融, (2012). 城市環境氣候圖-可持續城市規畫輔助信息系統工具, 中國建築工業出版社.
5.江明峰, (2009). 利用三維遙測資料分析道路周邊之二氧化碳平衡-以台84線為例, 碩士論文, 資源工程研究所, 國立成功大學.
6.佘品蓁, (2012). 道路設計因子對行車碳排放影響之研究, 碩士論文, 營建管理研究所, 國立中央大學.
7.吳佩儒, (2017), 台南都會區都市碳收支地圖之建置及分析, 碩士論文, 國立成功大學建築研究所.
8.李秀璇, (2007). 台灣地區汽油車輛 CO2 排放推估方法之研究, 碩士論文, 環境工程研究所, 國立成功大學.
9.李怡君, (2006). 交叉路口交通量預測模式之研究, 碩士論文, 土木工程學研究所, 臺灣大學.
10.卓宥瑄, (2012). 探討都市型態與能源消耗二氧化碳排放量的關聯性, 碩士論文, 都市計畫研究所, 國立臺北大學.
11.林奉怡, (2019), 建構都市規模下的微氣候、住宅能源需求及熱風險空間分佈地圖的開發研究, 博士論文, 國立成功大學建築研究所.
12.林致均, (2013). 低碳城市評估指標之研究, 碩士論文, 都市計畫與空間資訊學系, 逢甲大學.
13.林淑儀, (2012). 台北地區都市公園綠地碳貯存效果之評估-衛星遙測資料之應用, 碩士論文, 景觀學系, 中國文化大學.
14.林憲德, (2003). 熱濕氣候的綠色建築, 詹氏書局.
15.林憲德, (2015). 建築碳足跡-評估理論篇, 第二版, 詹氏書局.
16.林憲德, (2018). 建築產業碳足跡, 第三版, 詹氏書局.
17.胡大瀛, (2001). 動態路網模擬指派模式之建立, 第三十卷第一期, 運輸計劃季刊, pp.1-32.
18.孫鉑景, (2011). 動態複合運具運輸系統旅行成本因子影響節能減碳之敏感度分析, 碩士論文, 土木與生態工程學系, 義守大學.
19.張又升, (2002). 建築物生命週期二氧化碳減量評估, 博士論文, 建築研究所, 國立成功大學.
20.張永樹, (2005). 以二氧化碳減量探討都市住宅區綠化策略之研究, 碩士論文, 建築與都市設計研究所, 國立臺北科技大學.
21.陳炯男, (2005). 混合車流下模擬式動態交通指派模式之研究-使用者均衡原則, 碩士論文, 交通工程與管理所, 逢甲大學.
22.黃運貴, (2003). 運輸部門二氧化碳排放情形分析, 都市交通季刊.
23.楊恩捷, (2006). 都市型態對旅運需求影響之結構化分析, 運輸學刊, Volume 18, No.4 , pp.391-416.
24.廖林詮, (2009). 我國公路運輸系統能源節約及二氧化碳減量策略成效評估, 碩士論文,自然資源與環境管理研究所, 台北大學.
25.戴誥芬, (2010). 都市土地使用與二氧化碳濃度影響之關聯研究, 碩士論文, 都市計畫研究所, 國立成功大學.
26.謝昀昊, (2016). 陽台立面綠化對室內熱環境與能耗改善之評估-以台南地區為例, 碩士論文, 建築學系, 國立成功大學.
英文文獻:
1.Ala-Mantila, S., Heinonen, J., Junnila, S., (2014). Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: a multivariate analysis, Ecological Economics, Volume 104, pp 129-139.
2.Baiocchi, G., Minx, J., Hubacek, K., (2010). The impact of social factors and consumer behavior on carbon dioxide emissions in the United Kingdom, Journal of Industrial Ecology, Volume 14, no. 1, pp. 50-72.
3.Bureau of Energy (BOE), Ministry of economic affairs, (2010). Industrial technology research institute printed, Vehicle fuel consumption guidelines, Available at https://auto.itri.org.tw/download/DOC/greencarguideline_98.pdf
4.Cai, Z., Yin, Y., Wennerstern, R., (2013). From energy efficiency to integrated sustainability in housing development in China: A Case study in a hot-summer/cold-winter zone in China, Journal of Housing and the Built Environment, Volume 28, pp. 329-344.
5.Chang, C. T., Chih, H. Y., Lin, T. P., (2019). Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. Journal of Cleaner Production, Volume 230, pp. 1241-1255.
6.Chang, C. T., Lin, T. P., (2018). Estimation of carbon dioxide emissions generated by building and traffic in Taichung city, Sustainability, Volume 10, Issue 1, pp. 1-18.
7.Chang, H. C., Beungyong, P., Seong, R. R., (2017). A modified energy evaluation tool for residential complexes in South Korea to reflect total electricity consumption, Journal of Asian Architecture and Building Engineering, Volume 16 no.1, pp. 222.
8.Chang, Y. S., (2002). Life cycle assessment on the reduction of carbon dioxide emission of buildings, Ph.D. Thesis, Department of Architecture, National Cheng Kung University, Tainan, Taiwan, pp. 67-136.
9.Cheong, K.W., Chong, K.Y., (2001). Development and application of an indoor air quality audit to an air-conditioned building in Singapore, Building and Environment, Volume 36, pp. 181-188.
10.Davies, Z.G., Edmondson, J. L., Heinemeyer, A., Leake, J. R., Gaston, K. J., (2011). Mapping an urban ecosystem service: quantifying above‐ground carbon storage at a city‐wide scale, Journal of Applied Ecology, Volume 48, no. 5, pp. 1125-1134.
11.Environmental Protection Administration (EPA), (2017). Greenhouse Gas Inventory Taiwan Report Summary.
12.Francisco, E., Sebastian, V., Min, Z., John, E. W., Wayne, Z., (2010). Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities, Environmental Science and Policy, Volume 13, pp. 362-372.
13.Geurs, K., Wee, B. V., (2006). Ex-post evaluation of thirty years of compact urban development in the Netherlands, Urban Studies, Volume 43, no.1, pp. 139-160.
14.Heinonen, J., Jalas, M., Juntunen, K., Mantila, S., Junnila, S., (2013). Situated lifestyles: I. How lifestyles change along with the level of urbanization and what the greenhouse gas implications are-a study of Finland, Environmental Research Letters, Volume 8, no. 2, pp. 1-13.
15.Heinonen, J., Junnila, S., (2011). Implications of urban structure on carbon consumption in metropolitan areas, Environmental Research Letters, Volume 6, no. 1, pp. 1-9.
16.Hoornweg, D., Sugar, L., Trejos Gómez, C. L., (2011), Cities and greenhouse gas emissions:moving forward, Urban, Volume 23, no. 1, pp 207-227.
17.Hutyra, L. R., Yoon, B., Alberti, M., (2011). Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region, Global Change Biology, Volume 17, pp.783-797.
18.Iain, D. S., Chris, A. K., (2017). Metabolic heat production by human and animal populations in cities, International Journal of Biometeorology, Volume 61, Issue 7, pp 1159-1171.
19.Lenzen, M., Dey, C., Foran, B., (2004). Energy requirements of Sydney households, Ecological Economics, Volume 49, no. 3, pp. 375-399.
20.Lenzen, M., Wier, M., Cohen, C., Hayami, H., Pachauri, S., Schaeffer, R., (2006). A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan", Energy, Volume 31, no. 2, pp. 181-207.
21.Lin, H. T., (2015). Building carbon footprint, second edition, Chan’s Arch-Publishing Co., Ltd., Taipei City, Taiwan.
22.Lin, T. P., Lin, F. Y., Wu, P. R., (2017). Multiscale analysis and reduction measures of urban carbon Dioxide budget based on building energy consumption, Energy and Buildings, Volume 153, pp. 356-367.
23.Liu, X., Ou, J., Wang, S., Li, X., Yan, Y., Jiao, L., Liu, Y., (2018). Estimating spatiotemporal variations of city-level energy-related CO2 emissions: An improved disaggregating model based on vegetation adjusted nighttime light data, Journal of Cleaner Production ,Volume 177, pp. 101-114.
24.Ministry of Transportation and Communications(MOTC), (2011). Taiwan highway capacity manual, Institute of transportation, Taipei City, Taiwan.
25.Minx, J., Baiocchi, G., Wiedmann, T., Barrett, J., Creutzig, F., Feng, K., Förster, M., Pichler, P., Weisz, H., Hubacek, K., (2013). Carbon footprints of cities and other human settlements in the UK, Environmental Research Letters, Volume 8, no. 3, pp.35-39.
26.Newman, P., Kenworthy, J. R., (1989). Gasoline consumption and cities: A comparison of US cities with a global survey, Journal of the American Planning Association, Volume 55 no.1, pp. 24-37.
27.Niemela, J., Saarela, S. R., Söderman, T., Kopperoinen, L., Yli-Pelkonen, V., Väre, S., (2010). Using the ecosystem services approach for better planning and conservation of urban green spaces: A Finland case study, Biodiversity and Conservation, Volume 19, no.11, pp. 3225-3243.
28.Niovi, K., Daniel, J. G., Robert, B. N., (2010). Estimating the effect of urban density on fuel demand, Energy Economics Volume 32 no.1, pp. 86-92.
29.Norman, J., MacLean, H. L., Kennedy, C. A., (2006). Comparing high and low residential density:life-cycle analysis of energy use and greenhouse gas emissions, Journal of Urban Planning and Development, Volume 132, no. 1, pp 10-21.
30.Nowak, D. J., Crane, D. E., (2002). Carbon storage and sequestration by urban trees in the USA, Environmental Pollution, Volume 116, no.3, pp. 381-389.
31.Nowak, D. J., Greenfield, E. J., Hoehn, R. E., Lapoint, E., (2013).Carbon storage and sequestration by trees in urban and community areas of the United States, Environmental pollution, Volume 178, pp. 229-236.
32.Nowak, D. J., Hoehn, R., Crane, D. E., Bodine, A., (2012). Assessing urban forest effects and values in the great plains states: Kansas, Nebraska, North Dakota, South Dakota, USDA Forest Service, Northern Resource Bulletin NRS-71, Newtown Square, PA.
33.Ottelin, J., Heinonen, J., Junnila, S., (2018). Carbon footprint trends of metropolitan residents in Finland: How strong mitigation policies affect different urban zones, Journal of Cleaner Production, Volume 170, pp. 1523-1535.
34.Peng, T., (2010). An evaluation of CO2 emission reduction based on the supply of condominiums in central Kyoto, Journal of Asian Architecture and Building Engineering, pp. 63-70.
35.Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R., Kumar, E., (2016). Meta-principles for developing smart, sustainable, and healthy cities, Science (New York), Volume. 352, no. 6288, pp. 940-943.
36.Rickwood, P., Glazebrook, G., Searle, G., (2008). Urban structure and energy-a review, Urban policy and research, Volume 26, no. 1, pp. 57-81.
37.Schulz, N. B., (2010). Delving into the carbon footprints of Singapore-comparing direct and indirect greenhouse gas emissions of a small and open economic system, Energy Policy, Volume 38, no. 9, pp 4848-4855.
38.Sówka, I., Bezyk, Y., (2018). Greenhouse gas emission accounting at urban level: A case study of the city of Wroclaw, Atmospheric Pollution Research, Volume 9, pp. 289-298.
39.Strohbach, M. W., Arnold, E., Haase, D., (2012). The carbon footprint of urban green space-A life cycle approach, Landscape and Urban Planning, Volume 104, no. 2, pp. 220-229.
40.Strohbach, M., Haase, D., (2012). Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city, Landscape and Urban Planning, Volume 104, pp 95-104.
41.Transportation bureau of Taichung city government (TBT), (2010). Taichung city express bus BRT(Bus Rapid Transit) blue line project management and follow-up road network feasibility study and planning, Lin, T. Y., Taiwan consulting engineers Inc.
42.United Nations Population Division (UNPD), (2012). World Urbanization Prospects: the 2011 Revision, New York.
43.Wardrop, J. G. (1952), Some Theoretical Aspects of Road Traffic Research, Proceedings, Institution of Civil Engineers, Volume II(1), pp. 325-378.
44.Wendy, Y. C., (2015). The role of urban green infrastructure in offsetting carbon emissions in 35 Major Chinese cities: A nationwide estimate, Cities, Volume 44, pp. 112-120.
45.Wiedenhofer, D., Lenzen, M., Steinberger, J. K., (2013). Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications, Energy Policy, Volume 63, pp. 696-707.
46.Wiedmann, T., (2009). Editorial: carbon footprint and input-output analysis- an introduction, Economic Systems Research, Volume 21, no. 3, pp. 175-186.
47.Wiedmann, T., Minx, J., (2008). A definition of 'carbon footprint, Ecological economics research trends, Volume 1, pp. 1-11.
48.World Meteorological Organization (WMO), (2016). Greenhouse Gas Bulletin, No. 13: The state of greenhouse gases in the atmosphere based on global observations through 2016.
49.Wyckoff, A. W., Roop, J. M., (1994). The embodiment of carbon in imports of manufactured products-implications for international agreements on greenhouse gas emissions, Energy Policy, Volume 22, no. 3, pp 187-194.
50.Zhang, Y., Wu, Q., Brian D. F., (2018). Review of spatial analysis of urban carbon metabolism, Ecological Modelling, Volume 371, pp. 18-24.
51.Zhao, J., Chen, Y., Ji, G., Wang, Z., (2018). Residential carbon dioxide emissions at the urban scale for county- level cities in China: A comparative study of nighttime light data, Journal of Cleaner Production, Volume 180, pp. 198-209.