簡易檢索 / 詳目顯示

研究生: 鄭傑文
Cheng, Chieh-Wen
論文名稱: 以甲醇為燃料的質子交換膜燃料電池之設計與控制
Design and Control of a Methanol-fueled PEM Fuel Cell system
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 產氫甲醇自熱重組質子交換膜燃料電池
外文關鍵詞: Hydrogen production, PEM fuel cell, Methanol reforming
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時代的進步與工業的發展,使得人類仰賴化石燃料來發展文明
    為了減少對於化石燃料的依賴,各種替代能源的研究因運而生,本論
    文利用甲醇作為燃料,使用ASPEN PLUS軟體來模擬產氫製程,由結果可
    知在同樣的甲醇重組器,水煤氣反應器,進行設計下,自熱重組的產氫程序比較能提升氫氣產率,並以此為主體作了除去一氧化碳的三種設計,使產氫系統可以隨著需氫量的大小而因地制宜。
    為了對系統有更進一步的了解,本文採用具優先氧化段反應器為除一氧化碳段的甲醇自熱重組系統進行一系列的動態操控,在變數減少的情況下,成功在動態下使系統可以達到所要的產率。
    最後在MATLAB/Simulink與ASPEN PLUS進行系統結合動態模擬,並透過控制器將系統溫度維持一定。

    This research connect hydrogen processor and the low temperature PEM fuel cell system, the purpose of the system is to build a conceptual designs of different producing hydrogen by reforming methanol. By the results of ASPEN PLUS software, we can see with the same reformer and Water Gas Shift reactor, autothermal can make more yield of hydrogen. With the design ,we conduct 3 cases of CO reducing design for adapting different usage, sizing from massive methanol steam reforming with PSA(Pressure Swing Adsorption) to small scale methanol autothermal with PROX(Preferential Oxidation) reactor. Both PROX reactor and PSA serve as CO reducing unit for purpose of preventing the PEM Fuel Cell from poisoning the platinum catalyst , causing the cell efficiency loss. Moreover the stand alone design and simple waste heat recovery are also built in the systems above. Second part is conducting a series of dynamic of hydrogen production and ATV control. With ASPEN PLUS Dynamic, the system can reach a steady hydrogen producing, and found that the inlet water feed doesn’t affect much to the system. So methanol feed is the control variable, through the controller the output hydrogen can soon reach the set point. Finally we can build ASPEN/MATLAB integration and conduct a simple temperature control

    摘要 III Abstract IV 致謝 IX 圖目錄 XIII 表目錄 XV 符 號 說 明 XVI 第一章 緒論 1 1.1 前言 1 1.2燃料電池介紹 2 1.3文獻回顧與研究動機 6 第二章 數學模式建立 9 2.1前言 9 2.2數學模式之假設 9 2.3 PFR 質量守恆 9 2.3.1 PFR能量守恆 10 2.4 醇類蒸氣重組反應 11 2.4.1甲醇重組反應 12 2.5 質子交換膜燃料電池假設與數學式 15 2.5.1 數學模型之假設[19][23] 15 2.5.2 電池模型 16 2.6 其他單元數學式 26 2.6.1 燃燒器(Combustor) 26 2.6.2 熱交換器(Heat exchanger,HEX) 27 2.6.3 水煤氣反應器 28 2.6.4 PROX反應器 (Preferential oxidation reactor) 30 2.6.5 變壓吸附單元PSA (Pressure Swing Adsorption) 31 2.7 控制策略 33 2.7.1 Aspen Plus介紹[24] 33 2.7.2 Aspen Dynamic動態系統介紹[23][24] 34 2.7.3 Pressure-Driven 35 2.7.4 Flow-Driven 35 2.7.5控制器簡介 36 2.8 系統的整合 38 第三章 產氫製程模擬 40 3.1 穩態設計流程: 40 3.2蒸氣重組反應: 41 3.2.1蒸氣重組流程 41 3.2.2甲醇蒸氣重組(Design 1) 42 3.3自熱重組反應+PSA除氫製程(Design 2): 44 3.3.1.甲醇自熱產氫之分析 44 3.3.2甲醇自熱與PROX反應系統(Design 3) 49 3.4甲醇重組之比較 53 3.5 理想型獨立式自熱重組PROX系統 55 第四章 製程動態模擬 59 4.1 甲醇自熱產氫之動態分析 59 4.1.1系統啟動階段測試 60 4.2 產氫系統開環路測試 63 4.2.1 調醇響應 63 4.2.2 調水響應 64 4.3 閉環路控制-ATV測試找出PID參數 66 4.4燃料電池響應 70 4.4.1.模擬燃料電池啟動階段 70 4.4.2.控制問題浮現 71 4.5整合燃料電池與產氫系統 72 4.6整合系統的冷卻水控制器 75 第五章 結論 81 參考文獻 82

    [1] J.J Hwang, L.K Lai, W. Wu, W.R. Chang, “Dynamic modeling of a photovoltaic hydrogen fuel cell”, Journal of Hydrogen Energy 34 (2009) 9531-9542.
    [2] J.E. Larminie and A. Dicks, Fuel Cell Systems Explained, Chichester,U.K.:Wiley,2000.
    [3] I. Uriz, G. Arzamendi , E. Lopez, J. Llorca , L.M Gandia(2011), “Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels”, Chemical Engineering Journal 167,pp. 603-609.
    [4] Martha Ouzounidou, Dimitris Ipsakis ,Spyros Voutetakis(2009), “A combined methanol autothermal steam reforming and PEM fuel cell pilot plant unit: Experimental and simulation studies”, Energy 34,pp. 1733-1743.
    [5] Tuan Amran Tuan Abdullah, Hydrogen Production From Catalytic Ethanol Reforming In Supercritical Water.
    [6] Lucas Nieto Degliuomini, Sebastian Biset, Patricio Luppi, Marta S. Basualdo(2012), “A rigorous computational model for hydrogen production from bio-ethanol to feed a fuel cell stack”,International Journal of Hydrogen Energy 37, 3108-3129.
    [7] Shen Jian-bin, Tang You-gen, Liang Yi-zeng, Tan Xin-xin(2008), “Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery”,J. Cent. South Univ.technol 15,484-487.

    [8] James R. Lattner, Michael P. Harold(2006), “Comparison of methanol-based processors for PEM fuel cell systems”, J. Applied Catalysis 167,149-169.
    [9] Choi, Y., Stenger, H. G. (2005), ““Kinetics, simulation and optimization of methanol steam reformer for fuel cell applications”, J. Power Source, 79,89,91
    [10] Chuang, C.-C., Chen, Y.-H., Ward, J. D., Yu, C.-C., Liu, Y.-C., Lee, C.-H. (2008). “Optimal design of an experimental methanol fuel reformer. Int. J. Hydrogen Energy”, 33, 7062-7073.
    [11] Keiski R. L., Salmi, T., Niemisto, P., Ainassaari, J., Pohjola, V. J. (1996). “Stationary and Transient Kinetics of the High-Temperature Water-Gas Shift Reaction”, Appl. Catal., A, 137, 349-370.
    [12] Lattneer, L. R., Harold, M. P. (2007), “ Autothermal reforming of methanol: experiments and modeling”,Catalysis Today, 120, 78-89.
    [13] Li, M.; Duraiswamy, K.; Knobbe, M. (2012), “ Adsorption enhanced steam reforming of methanol for hydrogen generation in conjunction with fuel cell: Process design and reactor dynamics”, Chem. Eng. Sci., 67, 26-23
    [14] Martin, M., Grossmann, I. E., (2011), “ Energy optimization of hydrogen production from lignocellulosic biomass”, Computers and Chemical Engineering, 35, 1798-1806.
    [15] Tang, H.-Y., Erickson, P., Yoon, H. C., Liao, C.-H. (2009), “Comparison of steam and autothermal reforming of methanol using a packed-bed low-cost copper catalyst”, Int. J. Hydrogen Energy, 34, 7656-7665.
    [16] Stamps, A. T., Gatzke, E. P. (2006), “Dynamic modeling of a methanol reformer—PEMFC stack system for analysis and design”, J. Power Source, 161, 356-370.
    [17] Vadlamudi, V. K., Palanki, S. (2011), “ Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications”, Int. J. Hydrogen Energy 2011, 36, 3364-3370.
    [18] Wang, S, Wang, S. (2006), “Energy analysis and optimization of methanol generating hydrogen system for PEMFC”, Int. J. Hydrogen Energy, 31, 1747-1755.
    [19] Wu, W., Pai, C.-C. (2009), “Control of a heat-integrated proton exchange membrane fuel cell system with methanol reforming”, J. Power Source, 194, 920-930.
    [20] Amphlett JC, Creber KAM, Davis JM, Mann RF, Peppley BA, Stokes DM(1994), “Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells”, International Journal of Hydrogen Energy,19,131–7.
    [21] Choi Y, Stenger HG(2003), “Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen”, J. Power Sources,124:432-9.
    [22] M.J.Khan and M.T.lqbal, Dynamic modeling and simulation of a fuel cell
    generator. FUEL CELLS, 2005. 5: p. 97-104.
    [23] 吳煒,王正易,“優化、動態與可行性操作獨立混合式發電系統”
    國立成功大學化學工程所碩士論文,民國102年。
    [24] 邵波,“碳三加氫過程的優化與控制”,上海華東理工大學碩士論文。
    [25] 張玨庭,陳厚岑,“以方塊導向為模型的非線性鑑別”,
    國立成功大學博士論文,民國97年。
    [26] 黃鎮江,燃料電池,全華科技圖書,民國92年

    無法下載圖示 校內:2019-08-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE