簡易檢索 / 詳目顯示

研究生: 吳昭漢
Wu, Chao-Han
論文名稱: 鋰電池用AlxSiyAg1-(x+y)薄膜負極之後熱處理效應及其充放電特性研究
Effect of thermal post-treatment on the charge-discharge characteristics of AlxSiyAg1-(x+y) thin film anodes for Li-ion batteries
指導教授: 呂傳盛
Lui, Truan-Sheng
洪飛義
Hung, Fei-Yi
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 69
中文關鍵詞: 鋰電池鋁-矽負極後熱處理充放電
外文關鍵詞: lithium ion betteries, Al-Si anode, thermal post-treatment, Ag, cycling performance
相關次數: 點閱:94下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年鋰電池因具有優異電化學效能而被廣泛應用。目前商用化負極材料石墨雖具高循環性佳,但電容量偏低,因此許多能與鋰離子進行嵌脫反應的元素與化合物陸續被開發,其中以具最高理論電容量的矽與鋁最受矚目。二種元素中,鋁電容量雖較低,但充放電過程中所產生之體積變化較和緩,利於維持循環性(電容量維持率),且導電性較佳。綜合以上,可知鋁較矽更適合作為負極材料的基地相,而評估鋁-矽二元系統作為負極材料之可行性。
    以射頻磁控濺鍍法(RF sputtering)製備薄膜負極具有元素分布均勻、介面附著性佳與膜厚易控制等優點,對負極材料的研究實屬適合製程。此外,薄膜材料通常具有較低結晶化程度所伴隨之較高電阻率,而添加具低電阻率元素(如:銀)與施加後熱處理可提升薄膜材料的電子傳導能力。
    本研究採用射頻磁控濺鍍鋁-矽薄膜負極材料進行不同溫度(室溫、55 ˚C)下的充放電循環測試,並探討改變後熱處理溫度與添加銀(6 ~ 17 at.%)對材料微結構與充放電效能的影響,進行高溫充放電循環測試的原因是鋰電池實際使用溫度往往高於室溫,且關於電極材料於較高溫度下充放電效能的文獻仍相當缺乏。實驗結果顯示,除了電阻率下降外,結晶化程度提升與成分改變均對材料的充放電特性產生明顯影響。再者,本實驗中採用了循環伏安、電化學阻抗與穿透式電子顯微鏡探討材料嵌脫鋰反應機制,釐清充放電效能出現差異的原因。實驗發現,銀含量為10 at.%的Al0.55Si0.35Ag0.1初鍍試片與經200 ˚C-1 hr後熱處理的Al0.6Si0.4試片分別於室溫與55 ˚C下具最佳充放電效能,二者經30次循環後的電容量約為1000與1200 mAh/g,循環性約為99%,均具有市場應用性。

    In this study, the cycling tests at different temperatures were carried out for the sputtered Al-Si thin film anode. Both thermal post-treatment and Ag doping can reduce higher resistivity of thin film because of lower crystallization degree. The effects of the two kinds of modification on the microstructure and electrochemical performance were investigated. The thermally post-treated and Ag-doped specimens showed lowered resistivity and different electrochemical properties from others. The transition electron microscope was carried out for the investigation on the mechanism of lithiation-delithiation and the reason of difference among the cycling performance of specimens. The as-deposited Al0.55Si0.35Ag0.1 and thermally post-treated Al0.6Si0.4 (200 ˚C-1 hr) possessed the best performance at RT and 55 ˚C respectively. Their capacity after 30 cycles were 1000 and 1200 mAh/g and both the retention of them is about 99%.

    中文摘要....….………..…….....................................................…….......…….I 延伸摘要..…...………………….........................……….….…………...........II 總目錄…………………………………………………...….……………....XV 表目錄…………………………………………………….…………...….XVII 圖目錄……………………………............................................................XVIII 第一章 前言......................................................................................................1 第二章 文獻回顧...........................................................................................4 2-1 矽負極材料.......................................................................................4 2-2 鋁負極材料........................................................................................5 2-3 薄膜負極材料與濺鍍製程................................................................7 2-4 後熱處理與結晶度…........................................................................9 2-5 摻雜銀對負極應用性的評估...........................................................9 2-6 高溫充放電之應用性.....................................................................10 第三章 實驗步驟與方法.............................................................................17 3-1 極片製備.........................................................................................17 3-1-1 濺鍍與真空退火條件...........................................................17 3-1-2 鋁中介層之採用...................................................................18 3-2 低掠角XRD分析............................................................................. 18 3-3 聚焦離子束蝕刻與掃描式電子顯微鏡觀察….............................19 3-4 薄膜電阻率量測.............................................................................19 3-5 高解析穿透式電子顯微鏡觀察.....................................................20 3-6 電池組裝.........................................................................................20 3-7 充放電循環測試.............................................................................21 3-8 循環伏安分析……………………………..................................... 21 3-9 電化學阻抗………………………………………………….........21 第四章 結果與討論……………………………..........................................28 4-1 後熱處理影響鋁-矽近共晶薄膜負極充放電循環特性之機 制……………………………………………………………..........28 4-1-1 鋁-矽近共晶薄膜負極顯微組織特性..................................28 4-1-2 不同後熱處理溫度下鋁-矽近共晶薄膜負極之電 化學特性..........................................................................29 4-2 添加銀對Al0.6Si0.4過共晶薄膜負極之充放電行為探探討.............................................................................................. 31 4-2-1 Al0.6Si0.4過共晶薄膜負極之充放電效能與循環測試前前後顯微結構解析........................................................31 4-2-2 添加銀對Al0.6Si0.4過共晶薄膜負極充放電特性之影影響....................................................................................32 4-3 鋁-矽(-銀)薄膜負極充放電機制..............................................34 第五章 結論.............................................................................................60 參考文獻...................................................................................................62

    1. J.M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature, 414 (2001) 359-367.
    2. 廖宏奇,表面改質對LiMn2O4陰極材料之充放電特性效應探討,國立成功大學材料科學及工程學系碩士論文,2005年。
    3. K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand and M Gauthier, “LiFePO4/polymer/natural graphite: Low cost Li-ion batteries”, Electrochim. Acta 50 (2004) 263-270.
    4. 黃可龍、王兆翔、劉素琴,鋰離子電池原理與技術,五南圖書,臺北/中華民國,2010年。
    5. H. Guo, H. Zhao, C. Yin and W. Qiu, “A nanosized silicon thin film as high capacity anode material for Li-ion rechargeable batteries”, Mater. Sci. Eng., B 131 (2006) 173-176.
    6. M.J. Lindsay, G.X. Wang and H.K. Liu, “Al-based anode materials for Li-ion batteries”, J. Power Sources 119 (2003) 84-87.
    7. J.J. Lee, S.H. Kim, S. H. Jee, Y. S. Yoon, W.I. Cho, S.J. Yoon, J.W. Choi and S.C. Nam, “Characteristics of Sn/Li2O multilayer composite anode for thin film microbattery”, J. Power Sources 178 (2008) 434-438.
    8. J. Wang, Y. Tong, Z. Xu, W. Li, P. Yan and Y.W. Chung, “Amorphous silicon/carbon multilayer thin films as the anode for high rate rechargeable Li-ion batteries”, Mater. Lett. 97 (2013) 37-39.
    9. 施岳廷,Si-xAl薄膜負極在室溫及55 ˚C之電化學性質極結構特性探討,國立成功大學材料科學及工程學系碩士論文,2012年。
    10. M. Endo, Y. Nishimura, T. Takahashi, K. Takeuchi and M.S. Dresselhaus, “Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery”, J. Phys. Chem. Solids, 57 (1996) 725-728.
    11. E. Rönnebro, J. Yin, A. Kitano, M. Wada and T. Sakai, “Comparative studies of mechanical and electrochemical lithiation of intermetallic nanocomposite alloys for anode materials in Li-ion batteries”, Solid State Ionics, 176 (2005) 2749-2757.
    12. G.F. Ortiz, I. Hanzu, P. Knauth, P. Lavela, J.L. Tirado and T. Djenizian, “TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries”, Electrochim. Acta 54 (2009) 4262-4268.
    13. K.L. Lee, J.Y. Jung, S.W. Lee, H.S. Moon and J.W. Park, “Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries”, J. Power Sources 129 (2004) 270-274.
    14. M. Tillard, C. Belin, L. Spina and Y.Z. Jia, “Phase stabilities, electronic and electrochemical properties of compounds in the Li-Al-Si system”, Solid State Sci., 7 (2005) 1125-1134.
    15. T. Zhang, L.J. Fu, H. Takeuchi, J. Suzuki, K. Sekine, T. Takamura and Y.P. Wu, “Studies of the structure of vacuum deposited silicon films on metal substrate as anode materials for Li-ion batteries”, J. Power Sources 159 (2006) 349-352.
    16. 尹立輝、高俊奎、邱瑞珍,鋰離子蓄電池鍍錫陽極材料的研究,電源技術,29,716-718頁,2005年。
    17. 關俊美、楊勇,非碳類新型鋰離子蓄電池負極材料研究進展,電源技術,28,435-439頁,2004年。
    18. J. Wolfenstine, S. Campos, D. Foster, J. Read and W. Behl, “Nano-scale Cu6Sn5 anodes”, J. Power Sources 109 (2002) 230-233.
    19. Y. Kubota, M.C.S. Escaño, H. Nakanishi and H. Kasai, “Electronic structure of LiSi”, J. Alloys Compd. 458 (2008) 151-157.
    20. V.L. Chevrier, J.W. Zwanziger and J.R. Dahn, “First principles study of Li-Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations”, J. Alloys Compd. 496 (2010) 25-36.
    21. R. Nesper, H.G. von Schnering and H. Georg, “Li21Si5, A Zintl phase as well as a hume-rothery phase”, J. Solid State Chem. 70 (1987) 48-57.
    22. H. Usui, Y. Yamamoto, K. Yoshiyama, T. Itoh and H. Sakaguchi, “Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery”, J. Power Sources 196 (2011) 3911-3915.
    23. M.D. Fleischauer, M.N. Obrovac and J.R. Dahn, “Al-Si thin-film negative electrodes for Li-ion batteries”, J. Electrochem. Soc., 155 (2008) A851-A854.
    24. R.W. Berry, P.M. Hall, M.T. Harris, “Thin Film Technology”, Princeton, N.J.; Van Norstrand, N.Y./USA, 1968.
    25. H.Y. Lee and S.M. Lee, “Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries”, Electrochem. Commun. 6 (2004) 465-469.
    26. I.S. Kim and P.N. Kumta, “High capacity Si/C nanocomposite anodes for Li-ion batteries”, J. Power Sources 136 (2004) 145-149.
    27. W.R. Liu, Z.Z. Guo, W.S. Young, D.T. Shieh, H.C. Wu, M.H. Yang and N.L. Wu, “Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive”, J. Power Sources 140 (2005) 139-144.
    28. B.C. Yu, Y. Hwa, C.M. Park, J.H. Kim and H.J. Sohn, “Effect of oxide layer thickness to nano-Si anode for Li-ion batteries”, RSC Advances, 3 (2013) 9408-9413.
    29. S. Ohara, J. Suzuki, K. Sekine and T. Takamura, “Li insertion/extraction reaction at a Si film evaporated on a Ni foil”, J. Power Sources 119-121 (2003) 591-596.
    30. L.F. Cui, R. Ruffo, C.K. Chan, H. Peng and Y. Cui, “Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes”, Nano Lett. 9 (2009) 491-495.
    31. Y.T. Shih, C.H. Wu, F.Y. Hung, T.S. Lui and L.H. Chen, “A study at room temperature and 55 ˚C on the charge-discharge characteristics of Si(100-x)Alx thin film anode for Li-ion batteries”, Surf. Coat. Technol. 215 (2013) 79-84.
    32. J. Zhao, L. Wang, X. He, C. Wan and C. Jiang, “A Si-SnSb/pyrolytic PAN composite anode for lithium-ion batteries”, Electrochim. Acta 53 (2008) 7048-7053.
    33. Z.W. Lu, G. Wang, X.P. Gao, X.J. Liu and J.Q. Wang, “Electrochemical performance of Si-CeMg12 composites as anode materials for Li-ion batteries”, J. Power Sources 189 (2009) 832-836.
    34. Z.Y. Zeng, J.P. Tu, X.L. Wang and X.B. Zhao, “Electrochemical properties of Si/LiTi2O4 nanocomposite as anode materials for Li-ion secondary batteries”, J. Electroanal. Chem. 616 (2008) 7-13.
    35. X. Li, P. Meduri, X. Chen, W. Qi, M.H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. Wang, J.G. Zhang and J. Liu, “Hollow core-shell structured porous Si-C nanocomposites for Li-ion battery anodes”, J. Mater. Chem., 22 (2012) 11014-11017.
    36. Y. Hwa, W.S. Kim, S.H. Hong and H.J. Sohn, “High capacity and rate capability of core-shell structured nano-Si/C anode for Li-ion batteries”, Electrochim. Acta 71 (2012) 201-205.
    37. C.J. Wen and R.A. Huggins, “Chemical diffusion in intermediate phases in the lithium-silicon system”, J. Solid State Chem. 37 (1981) 271-278.
    38. D.A. Hansen and J.F. Smith, “The structure of Li9Al4”, Acta Cryst. B24 (1968) 913-918.
    39. R. Hu, M. Zeng, C.Y. V. Li and M. Zhu, “Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al-Sn system”, J. Power Sources 188 (2009) 268-273.
    40. G. Pistoia, “Batteries for Portable Devices”, Elsevier, Amsterdam/Nederland, 2005.
    41. X.Q. Guo, R. Podloucky and A.J. Freeman, “Structural and electronic structural properties of ordered LiAl compounds”, Phys. Rev. B, 40 (1989) 2793-2800.
    42. X. Lei, C. Wang, Z. Yi, Y. Liang and J. Sun, “Effects of particle size on the electrochemical properties of aluminum powders as anode materials for lithium ion batteries”, J. Alloys Compd. 429 (2007) 311-315.
    43. K. Ui, K. Yamamoto, K. Ishikawa, T. Minami, K. Takeuchi, M. Itagaki, K. Watanabe and N. Koura, “Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode”, J. Power Sources 183 (2008) 347-350.
    44. Y. Hamon, T. Brousse, F. Jousse, P. Topart, P. Buvat and D.M. Schleich, “Aluminum negative electrode in lithium ion batteries”, J. Power Sources 97 (2001) 185-187.
    45. S.K. Sharma, M.S. Kim, D.Y. Kim and J.S. Yu, “Al nanorod thin films as anode electrode for Li ion rechargeable batteries”, Electrochim. Acta 87 (2013) 872-879.
    46. Z. Chen, J. Qian, X. Ai, Y. Cao and H. Yang, “Electrochemical performances of Al-based composites as anode materials for Li-ion batteries”, Electrochim. Acta 54 (2009) 4118-4122.
    47. O.N. Efimov, D.G. Belov, G.I. Kozub, L.I. Tkachenko, L.P. Krinichnaya and G.N. Petrova, “Laminated composites based on polyacetylene and Al-Mg alloy negative electrode materials for Li rechargeable batteries”, Synth. Met. 79 (1996) 193-196.
    48. F.M. Smits, “Measurement of sheet resistivities with the four-point probe”, Bell System Tech. J. (1958) 711-718.
    49. ASM international, “Volume 3 Alloy Phase Diagrams”, The Materials Information Company, Ohio/USA , 1992.
    50. Z.B. Sun, X.D. Wang, X.P. Li, M.S. Zhao, Y. Li, Y.M. Zhu and X.P. Song, “Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries”, J. Power Sources 182 (2008) 353-358.
    51. D.L. Smith, “Thin Film Deposition: Principles and Practices”, McGraw-Hill Professional, New York/USA , 1995.
    52. 周建志,濺鍍非晶質SbTe合金薄膜電阻特性之Ag/In複合添加與結晶化效應研究,國立成功大學材料科學及工程學系博士論文,2007年。
    53. 高誠輝,非晶態合金鍍及其鍍層性能,科學出版社,北京/中國,2003年。
    54. Z. Zhou, M. Wu, L. Huang and G. Xu, “Amorphous Si film anode coupled with LiCoO2 cathode in Li-ion cell”, J. Power Sources 174 (2007) 533-537.
    55. R. Elazari, G. Salitra, G. Gershinsky, A. Garsuch, A. Panchenko and D. Aurbach, “Li ion cells comprising lithiated columnar silicon film anodes, TiS2 cathodes and fluoroethyene carbonate (FEC) as a critically important component”, J. Electrochem. Soc., 159 (2012) A1440-A1445.
    56. V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, “Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes”, Electrochem. Commun. 9 (2007) 796-800.
    57. F.Thoss, L.Giebeler, S. Oswald, H. Ehrenberg and J. Eckert, “Study on the reversible Li-insertion of amorphous and partially crystalline Al86Ni8La6 and Al86Ni8Y6 alloys as anode materials for Li-ion batteries”, Electrochim. Acta, 60 (2012) 85-94.
    58. R.A. Serway, “Principles of Physics”, Saunders College Pub., Philadelphia/USA , 1998.
    59. C.M. Park, H.C. Jung and H.J. Sohn, “ Electrochemical behavior and reaction mechanism of nanosilver with lithium”, Electrochem. Solid-State Lett., 12 (2009) A171-A175.
    60. X. Ding, X. Lu, Z. Fu and Hong Li, “Temperature-dependent lithium storage behavior in tetragonal boron (B50) thin film anode for Li-ion batteries”, Electrochim. Acta, 87 (2013) 230-235.
    61. Y.H. Zhao, J.Y. Wang and E.J. Mittemeijer, “Interaction of amorphous Si and crystalline Al thin films during low-temperature annealing in vacuum”, Thin Solid Films 433 (2003) 82–87.
    62. 張博富,參雜金屬鑭改質LiFePO4/C鋰離子電池陰極材料,國立中央大學化學工程與材料工程研究所碩士論文,2008年。
    63. 莊全超、徐守冬、邱祥雲、崔永麗、方亮、孫世剛,鋰離子電池的電化學阻抗譜分析,化學進展,22,1044-1057頁,2010年。
    64. H.J. Ahn, Y.S. Kim, W.B. Kim, Y.E. Sung and T.Y. Seong, “Formation and characterization of Cu-Si nanocomposite electrodes for rechargeable Li batteries”, J. Power Sources, 163 (2006) 211-214.
    65. L.B. Chen, J.Y. Xie, H.C. Yu and T.H. Wang, “Si-Al thin film anode material with superior cycle performance and rate capability for lithium ion batteries”, Electrochim. Acta, 53 (2008) 8149-8153.
    66. C.H. Wu, F.Y. Hung, T.S. Lui and L.H. Chen, “Microstructural characteristics and the charge-discharge characteristicsof Sn-Cu thin film materials”, Mater. Trans., JIM 50 (2009) 381-387.

    無法下載圖示 校內:2017-09-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE