| 研究生: |
李梓葳 Li, Zih-Wei |
|---|---|
| 論文名稱: |
ASnO₃鈣鈦礦中A位離子對其結構和熱性質影響 Influence of A-site Cations in ASnO₃ Perovskites on their Structure and Thermal Properties |
| 指導教授: |
龔慧貞
Kung, Jennifer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鈣鈦礦結構 、熱膨脹 、熱傳導率 、八面體扭曲 |
| 外文關鍵詞: | Perovskite structure, Thermal expansion, Thermal conductivity, Octahedral distortion |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦(ABO₃)結晶結構可視為由彼此共頂點的BO₆八面體構成之三維結構,A離子則位在BO₆八面體間形成的8至12配位空隙中。容差因子(Goldschmidt tolerance factor,t)利用結構中A、B、O離子半徑進行計算所得。當結晶結構為理想的鈣鈦礦(立方晶系)結構,容差因子將接近1。隨BO₆八面體於空間中的扭曲程度增加,結晶結構逐漸傾向四方、斜方對稱性時,計算所得之容差因子逐漸偏離1。故透過容差因子,可以評估鈣鈦礦結構中八面體於空間中扭曲程度與晶格結構對稱性。在鹼土金屬錫酸鹽鈣鈦礦序列中,隨著A位離子半徑由Ba²⁺(1.61 Å)、Sr²⁺(1.44 Å)遞減至Ca²⁺(1.34 Å),容差因子依序從1.02降至0.93。BaSnO₃維持立方結構,而SrSnO₃與CaSnO₃因八面體扭曲,屬GdFeO₃型斜方對稱。
本研究透過固態反應法合成CaSnO₃、SrSnO₃及BaSnO₃單晶與粉末樣品,並利用高解析X光粉末繞射(HR-XRD)與時間域熱反射(TDTR)技術,首次於一致實驗條件下系統性探討A位離子尺寸對錫酸鹽鈣鈦礦結構與熱性質之影響,建立了完整的晶格膨脹與單晶塊材熱導率數據。研究結果顯示,使晶體結構由高對稱性的立方相逐步轉變至低對稱性的斜方相,SnO₆八面體扭曲程度隨之增加。實驗中SrSnO₃在高溫下經歷兩階段相變(873K斜方Pbnm→Imma、1033K Imma→四方I4/mcm),展現出複雜的晶格演化特性;而CaSnO₃則仍維持斜方晶系結構。而三材料在測試溫度範圍內皆表現出相近的體積熱膨脹行為,此現象主要來自於八面體扭曲程度變化、進而增加A-O12多面體空間之貢獻。熱傳導率量測結果則表明,隨著結構對稱性降低,晶體的熱傳導率降低且晶軸方向性差異減小,其中BaSnO₃具有最高的熱傳導率與顯著的異向性,而SrSnO₃與CaSnO₃的熱傳導效率明顯下降且方向性趨近。本研究之系統性結果對鈣鈦礦結構在結晶化學角度針對A位陽離子與物理性質之影響提供重要資訊,並有助於作為地球鈣鈦礦結構礦物結構轉變之物理性質趨勢演變之參考依據。
Perovskite stannates (ASnO₃, A = Ca, Sr, Ba) are useful for studying how crystal structure affects thermal properties. The stability of these materials depends on the size of the A-site ion, which controls octahedral distortion and lattice symmetry. This study synthesized CaSnO₃, SrSnO₃, and BaSnO₃ single crystals and powders using solid-state reactions and examined their thermal behaviors under the same experimental conditions.
High-resolution synchrotron powder X-ray diffraction showed that BaSnO₃ keeps its cubic symmetry, while SrSnO₃ and CaSnO₃ form orthorhombic phases with different SnO₆ octahedral distortions. Temperature-dependent diffraction revealed that SrSnO₃ goes through two phase transitions (Pbnm → Imma at 873 K, Imma → I4/mcm at 1033 K), but CaSnO₃ stays orthorhombic phase from 298 to 1173 K. Even with different symmetries, all three compounds show similar volume thermal expansion coefficients, which reflects contributions from both octahedral tilting and A-O polyhedral changes.
We measured thermal conductivity using time-domain thermoreflectance (TDTR) on oriented single crystals. The results show that lower symmetry leads to lower conductivity and less anisotropy: BaSnO₃ has the highest conductivity and strong directional dependence, while SrSnO₃ and CaSnO₃ show reduced values and nearly isotropic transport. These results are new findings that link A-site cation size, lattice distortion, and phonon transport, providing insights into both functional oxide and understanding Earth perovskite materials.
Bévillon, É., Chesnaud, A., Wang, Y., Dezanneau, G., & Geneste, G. (2008). Theoretical and experimental study of the structural, dynamical and dielectric properties of perovskite BaSnO3. Journal of Physics Condensed Matter, 20(14). https://doi.org/10.1088/0953-8984/20/14/145217
Cahill, D. G. (2004). Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 75(12), 5119–5122. https://doi.org/10.1063/1.1819431
Cahill, D. G., & Watanabe, F. (2004). Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K. Physical Review B - Condensed Matter and Materials Physics, 70(23), 1–3. https://doi.org/10.1103/PhysRevB.70.235322
Cho, H. J., Sato, K., Wei, M., Kim, G., & Ohta, H. (2020). Effect of lattice distortions on the electron and thermal transport properties of transparent oxide semiconductor Ba1-x Sr x SnO3 solid solution films. Journal of Applied Physics, 127(11). https://doi.org/10.1063/5.0002172
Choquette, S. J. (2017). Certificate of Analysis Standard Reference Material 674b X-Ray Powder Diffraction Intensity Set (Quantitative Powder Diffraction Standard).
Fei, Y. (1995). Thermal Expansion (pp. 29–44). https://doi.org/10.1029/rf002p0029
GLAZER A. M. (1970). The Classification of Tilted Octahedra in Perovskites. In Tetrahedron Lett. p. 4137. SUNDARALtNGAM. M (Vol. 225). FORDAP.
Glerup, M., Knight, K. S., & Poulsen, F. W. (2005). High temperature structural phase transitions in SrSnO3 perovskite. Materials Research Bulletin, 40(3), 507–520. https://doi.org/10.1016/j.materresbull.2004.11.004
Gonzalez-Platas, J., Alvaro, M., Nestola, F., & Angel, R. (2016). EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. Journal of Applied Crystallography, 49(4), 1377–1382. https://doi.org/10.1107/S1600576716008050
Kennedy, B. J., Howard, C. J., & Chakoumakos, B. C. (1999). High-temperature phase transitions in SrZrO 3.
Kennedy, B. J., Qasim, I., & Knight, K. S. (2015). Low temperature structural studies of SrSnO3. Journal of Physics Condensed Matter, 27(36). https://doi.org/10.1088/0953-8984/27/36/365401
Kim, H. J., Kim, U., Kim, T. H., Kim, J., Kim, H. M., Jeon, B. G., Lee, W. J., Mun, H. S., Hong, K. T., Yu, J., Char, K., & Kim, K. H. (2012). Physical properties of transparent perovskite oxides (Ba,La)SnO 3 with high electrical mobility at room temperature. Physical Review B - Condensed Matter and Materials Physics, 86(16). https://doi.org/10.1103/PhysRevB.86.165205
Kittel Charles. (2005). Introduction to Solid State Physics (8th ed.). John Wiley & Sons, Inc.
Kung, J., Angel, R. J., & Ross, N. L. (2001). Elasticity of CaSnO3 perovskite. Physics and Chemistry of Minerals, 28(1). https://doi.org/10.1007/s002690000122
Liu, L.-G., & Ringwood, A. E. (1975). SYNTHESIS OF A PEROVSKITE-TYPE POLYMORPH OF CaSiO3. In Earth and Planetary Science Letters (Vol. 28).
Luo, X., Oh, Y. S., Sirenko, A., Gao, P., Tyson, T. A., Char, K., & Cheong, S. W. (2012). High carrier mobility in transparent Ba 1-xLa xSnO 3 crystals with a wide band gap. Applied Physics Letters, 100(17). https://doi.org/10.1063/1.4709415
Maekawa, T., Kurosaki, K., & Yamanaka, S. (2006). Thermal and mechanical properties of polycrystalline BaSnO3. Journal of Alloys and Compounds, 416(1–2), 214–217. https://doi.org/10.1016/j.jallcom.2005.08.032
Mountstevens, E. H., Attfield, J. P., & Redfern, S. A. T. (2003). Cation-size control of structural phase transitions in tin perovskites. In J. Phys.: Condens. Matter (Vol. 15). http://iopscience.iop.org/0953-8984/15/49/010
Nestola, F., Korolev, N., Kopylova, M., Rotiroti, N., Pearson, D. G., Pamato, M. G., Alvaro, M., Peruzzo, L., Gurney, J. J., Moore, A. E., & Davidson, J. (2018). CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature, 555(7695), 237–241. https://doi.org/10.1038/nature25972
O’keeffe, M., Hyde, B. G., & Bovin, J.-O. (1979). PHYSICS CHEMISTRY [ MIHERALS Contribution to the Crystal Chemistry of Orthorhombie Perovskites: MgSiO 3 and NaMgF 3. In Phys. Chem. Minerals (Vol. 4).
Peter Atkins, & Julio de Paula. (2006). PHYSICAL CHEMISTRY.
Phelan, D., Han, F., Lopez-Bezanilla, A., Krogstad, M. J., Gim, Y., Rong, Y., Zhang, J., Parshall, D., Zheng, H., Cooper, S. L., Feygenson, M., Yang, W., & Chen, Y. S. (2018). Structural properties of barium stannate. Journal of Solid State Chemistry, 262, 142–148. https://doi.org/10.1016/j.jssc.2018.01.019
Prakash, A., Xu, P., Wu, X., Haugstad, G., Wang, X., & Jalan, B. (2017). Adsorption-controlled growth and the influence of stoichiometry on electronic transport in hybrid molecular beam epitaxy-grown BaSnO3 films. Journal of Materials Chemistry C, 5(23), 5730–5736. https://doi.org/10.1039/c7tc00190h
Prodjosantoso, A. K., Zhou, Q., & Kennedy, B. J. (2013). Synchrotron X-ray diffraction study of the Ba1-xSrSnO 3 solid solution. Journal of Solid State Chemistry, 200, 241–245. https://doi.org/10.1016/j.jssc.2013.01.015
Redfern, S. A. T., Chen, C. J., Kung, J., Chaix-Pluchery, O., Kreisel, J., & Salje, E. K. H. (2011). Raman spectroscopy of CaSnO3 at high temperature: A highly quasi-harmonic perovskite. Journal of Physics Condensed Matter, 23(42). https://doi.org/10.1088/0953-8984/23/42/425401
Rustum Roy, & Olaf Muller. (1974). The major ternary structural families (Crystal chemistry of non-metallic materials). 153–211.
Sébastien Merkel -- Scientific Illustrations -- Perovskite: Pnma vs. Pbnm vs. pseudo-cubic. (n.d.). Retrieved July 18, 2025, from http://merkel.texture.rocks/Illustrations/index.php?lang=en&index=3
Shrivastava, S., Nehra, S., Kumar, S., Singh, J., Rayaprol, S., Bhattacharya, S., Kumar, A., Sharma, N. D., & Dogra, A. (2023a). Temperature-dependent dielectric measurements and structural properties of barium stannate (BaSnO3). Journal of Alloys and Compounds, 957. https://doi.org/10.1016/j.jallcom.2023.170458
Shrivastava, S., Nehra, S., Kumar, S., Singh, J., Rayaprol, S., Bhattacharya, S., Kumar, A., Sharma, N. D., & Dogra, A. (2023b). Temperature-dependent dielectric measurements and structural properties of barium stannate (BaSnO3). Journal of Alloys and Compounds, 957. https://doi.org/10.1016/j.jallcom.2023.170458
Thomas, N. W. (1996). The Compositional Dependence of Octahedral Tilting in Orthorhombic and Tetragonal Perovskites. Acta Crystallographica Section B: Structural Science, 52(1), 16–31. https://doi.org/10.1107/S0108768195006100
Toby, B. H., & Von Dreele, R. B. (2013). GSAS-II: The genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544–549. https://doi.org/10.1107/S0021889813003531
V. M. Goldschmidt. (1926). GOLDSCIllglDT: Die Gesetze der Krystallochemie. [ Die Natur.
Wen-Pin Hsieh. (2011). TESTING THEORIES FOR THERMAL TRANSPORT USING HIGH PRESSURE.
Zhang, C., Liu, F., Guo, S., Zhang, Y., Xu, X., Mkhoyan, K. A., Jalan, B., & Wang, X. (2023). Temperature-dependent thermal conductivity of MBE-grown epitaxial SrSnO3 films. Applied Physics Letters, 123(4). https://doi.org/10.1063/5.0156367
Zhao, J., Ross, N. L., & Angel, R. J. (2004a). New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Crystallographica Section B: Structural Science, 60(3), 263–271. https://doi.org/10.1107/S0108768104004276
Zhao, J., Ross, N. L., & Angel, R. J. (2004b). Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Physics and Chemistry of Minerals, 31(5), 299–305. https://doi.org/10.1007/s00269-004-0391-1
校內:2030-08-29公開