| 研究生: |
陳柏碩 Chen, Bo-Shuo |
|---|---|
| 論文名稱: |
使用分子動力學、第一原理計算與TCAD模擬進行非理想電子狀態與元件特性的計算 Simulation Procedure for Non-ideal Local States and Device Characteristics Calculations with Molecular Dynamics, Ab Initio and TCAD Simulators |
| 指導教授: |
高國興
Kao, Kuo-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 帶尾能態 、分子動力學 、第一原理計算 、TCAD |
| 外文關鍵詞: | Band Tail States, Molecular Dynamics, Ab Initio, TCAD |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著量子電腦與高效能運算的發展,操作於低溫的互補式金氧半場效電晶體越來越受到重視。從過去的文獻中我們已經知道元件特性會隨著降溫而獲得改善,例如較低的漏電流、較陡峭的次臨界擺幅與較高的載子遷移率等等。然而,存在於半導體通道與閘極氧化層介面的帶尾能態會在低溫下顯著地影響元件的特性,而針對這個議題的理論模型尚未完整。因此本研究論文發展了一套模擬流程,使用了分子動力學、第一原理計算與TCAD 模擬,計算帶尾能態的分布情形,並且分析帶尾能態對於元件特性的影響。
首先我們利用分子動力學建構出S i/SiO 2 介面模型,用來代表電晶體內部的半導體通道與閘極氧化層,之後使用第一原理計算分析此模型的帶尾能態,從此結果當中,我們可以再進一步分析帶尾能態在實體空間中的分布情形,以及計算帶尾能態的寬度,最後在TCAD 模擬中加入帶尾模型,並將第一原理計算的結果作為輸入參數,藉由比較元件在不同溫度下的電性表現,了解帶尾能態在低溫時對於元件特性的影響程度。
With the development of quantum computing and high-performance computing in recent years, cryogenic CMOS has attracted much attention. From past literatures, it is known that the device characteristics will be improved with decreasing temperature, for instance, lower leakage current, steeper subthreshold swing, higher carrier mobility, etc. However, the presence of band tail states at the semiconductor-channel/gate-oxide interface affects the electrical characteristics of MOSFETs at low temperatures. And the theoretical analyzer has not been completely constructed yet. Therefore, this study develops a simulation procedure to calculate band tail states and analyze the impact of band tail states on device characteristics by using molecular dynamics, ab initio, and TCAD simulators.
First, we create a Si/SiO2 atomic model by MD simulations to represent the semiconductor-channel/gate-oxide interface structure in a MOSFET. Then, the density of states of the Si/SiO2 model is calculated by ab initio calculations. From this result, we further analyze the spatial distribution of band tail states and calculate the width of band tail states. Lastly, the result obtained by ab initio calculation can be used as input parameters of the band tail model in TCAD simulations. By comparing the electrical performance of MOSFETs at working different temperatures, we can understand the impacts of band tail states on the device characteristics at low temperatures.
[1] E. Charbon et al., “Cryo-CMOS for quantum computing,” in 2016 IEEE International Electron Devices Meeting (IEDM), 2016,
[2] J. Woo, “Low Temperature Logic Technology (LTLT)”, DARPA, March 16, 2021.
[3] IEEE, “Cryogenic Electronics and Quantum Information Processing”, International roadmap for Device and Systems (IRDS), 2021.
[4] A. Beckers, F. Jazaeri and C. Enz, “Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors,” in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020.
[5] H. Bohuslavskyi et al., “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening,” in IEEE Electron Device Letters, vol. 40, no. 5, pp. 784-787, May 2019.
[6] F. Jazaeri, A. Beckers, A. Tajalli and J. -M. Sallese, “A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics,” 2019 MIXDES - 26th International Conference "Mixed Design of Integrated Circuits and Systems", pp. 15-25, 2019.
[7] B. Patra et al., “Cryo-CMOS Circuits and Systems for Quantum Computing Applications,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, 2018.
[8] F. Sebastiano et al., "Cryogenic CMOS interfaces for quantum devices," 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 59-62, 2017.
[9] Pauka, S.J., Das, K., Kalra, R. et al. “A cryogenic CMOS chip for generating control signals for multiple qubits” Nat Electron 4, 64–70, 2021.
[10] K. -H. Kao et al., “Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures,” in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296-1299, 2020.
[11] R. M. Jock, S. Shankar, A. M. Tyryshkin, J. He, K. Eng, K. D. Childs, L. A. Tracy, M. P. Lilly, M. S. Carroll, and S. A. Lyon, “Probing band-tail states in silicon metal-oxide-semiconductor heterostructures with electron spin resonance,” Appl. Phys. Lett., vol. 100, no. 2, 2012.
[12] P. Sarangapani, Y. Chu, J. Charles, G. Klimeck, and T. Kubis, “Band-tail formation and band-gap narrowing driven by polar optical phonons and charged impurities in atomically resolved III-V semiconductors and nanodevices,” Phys. Rev. Appl., vol. 12, 2019.
[13] P. Van Mieghem, “Theory of band tails in heavily doped semiconductors”, Rev. Mod. Phys., 64, 755, 1992.
[14] S. R. Johnson and T. Tiedje, “Temperature dependence of the Urbach edge in GaAs”, J. Appl. Phys., 9, 5609, 1995.
[15] Sandia Corporation, LAMMPS (2017).
[16] A. C T van Duin, S. Dasgupta, F. Lorant and W. A. Goddard, “ReaxFF: A Reactive Force Field for Hydrocarbons”, J. Phys. Chem. A, 105, 9396, 2001.
[17] G. Kresse and J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set”, Comput. Mater. Sci., 6, 15, 1996.
[18] P. E. Blochl, “Projector augmented-wave method”, Phys. Rev. B, 50, 17953, 1994.
[19] Sentaurus Device, Synopsys, Version S-2021-06.
[20] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys., 81, 511, 1984.
[21] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A, 31, 1695, 1985.
[22] G. Hollinger and F. J. Himpsel, “Probing the transition layer at the SiO2-Si interface using core level photoemission”, Appl. Phys. Lett., 44, 93, 1984.
[23] Press, W.H. and Teukolsky, S.A. and Vetterling, W.T. and Flannery, B.P. “Numerical Recipes: The Art of Scientific Computing”, Cambridge University Press, New York, 1986.
[24] J. Sun, B. Xiao and A. Ruzsinszky, “Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation”, J. Chem. Phys., 137, 051101, 2012.
[25] J. Friedel, “The distribution of electrons round impurities in monovalent metals”, Philos. Mag., 43, 153, 1952.
[26] J. M. Li, J. Wang, Q. Sun, Y. Jia, “First-principles study of Friedel oscillations normal to the low index surfaces of Al”, Physica B, 406, 2767, 2011.
校內:2028-07-01公開