簡易檢索 / 詳目顯示

研究生: 楊濬豪
Yang, Chun-Hao
論文名稱: 透地雷達應用於木結構裂損檢測及地下管線判釋之研究
Detect the Crack of Wood Structure and Identify the Materials of Underground pipeline Using GPR
指導教授: 吳建宏
Wu, Jian-Hong
共同指導教授: 林宏明
Lin, Hung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 176
中文關鍵詞: 透地雷達非破壞性檢測技術
外文關鍵詞: Ground Penetrating Radar, Non-Destructive Testing
相關次數: 點閱:203下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要藉由透地雷達圖徵判釋以及頻譜訊號分析方法,針對木構件與地下管線,建立其材料之特徵頻譜用以評估木結構裂損程度和地下管線材料之判釋,並量化案例分析結果。
    在木構件檢測方面,主要分成室內試驗和現地試驗,室內試驗材種上選擇是採用新鮮40年生的台灣福州杉為試驗對象,以進行各種非破壞性檢測技術的驗證工作,現地試驗則以台南興濟宮和鹿港龍山寺之木柱構件作為實驗技術檢核目標。
    在地下管線檢測方面,主要會在成功大學安南校區,填埋各種不同材質材料、尺寸之管線,並探討其埋設物圖徵形狀、解析度、相對介電常數,建立材料之特徵頻譜,作為往後相關現地檢測之參考依據。
    由於非破壞檢測技術的發展日新月異,透地雷達檢測方式結合斷層影像材質評估技術,能架構成二維影像資料,對於一般民眾和專業工程修復人員而言,可以提供比較容易理解且更為完整的資料作參考,因此,相關檢測及現地檢測結果除了可作為古蹟木柱保存及地下管線判釋之基礎資料外,亦可作為將來古蹟木結構裂損情況比對及整體建築物安全評估之依據,地下管線則能更精確且數據化地被定位出來。

    The purpose of this research is mainly to find out the Ground Penetrating Radar (GPR) signal characteristics spectrum to detect the Crack of Wood Structure and identify the Materials of Underground Pipeline, and expect to increase the diversity of GPR determination methods as well as derive a quantization result of site case analysis. The GPR detection method combined with cross-section image assessment technology, can be structured into two-dimensional image data, for the general public and professional engineering repair personnel, can provide easier to understand and more complete information for reference.
    In the detection of wood components, it is mainly divided into indoor tests and site tests. The chosen wood material species of indoor tests is fresh 40-year-old Taiwan Fuzhou fir as the test object to carry out a variety of non-destructive testing technology verification work, while the local tests are to examine the wooden pillar components of Tainan Xian Ji Gong and Lugang Longshan Temple as an experimental technical inspection objectives. In the part of underground pipeline inspection, it is mainly in the success of the Annan campus in National Cheng Kong University. It is conducted that landfilling a variety of different materials and sizes of the pipelines to explore its embedded character shape, resolution, relative dielectric constant, and the establishment of the characteristics of the material spectrum, hoping the experiment could be as the future reference to related to the basis detection.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 研究流程 2 1-4 研究大綱 3 第二章 文獻回顧 5 2-1 透地雷達之相關研究 5 2-2 透地雷達之文獻回顧 7 2-2-1 木構件探測 7 2-2-2 地下管線探測 14 2-3 透地雷達分析之相關研究 19 第三章 透地雷達儀器與基本理論 24 3-1儀器介紹 24 3-1-1操作流程 28 3-2 基本理論 31 3-2-1 馬克斯威爾方程式 (Maxwell equation) 31 3-2-2 雷達波能量傳遞方程式 32 3-3 介質的電磁特性 33 3-3-1 導電度 (conductivity) 33 3-3-2 低耗損及高耗損介質 (low-loss and high-loss material) 34 3-3-3 相對介電常數 (relative dielectric constant) 34 3-3-4 相對介電常數與波速之關係 35 3-3-5 反射係數 (Reflection Coefficient) 35 3-4 透地雷達探測深度之問題探討 36 3-5 解析度 38 3-6 資料分析原理與目的 39 3-6-1 疊加法 (stacking) 39 3-6-2 高程修正 40 3-6-3 解迴旋 (deconvolution) 41 3-6-4 希伯特轉換 (Hilbert transform) 41 3-7透地雷達圖徵判釋 43 3-8 頻譜分析 45 3-8-1 頻譜 (Spectrum) 45 3-8-2 傅立葉變換 (Fourier Transform) 45 3-8-3 快速傅立葉變換 (Fast Fourier Transform) 45 第四章 資料分析與研究方法 46 4-1 透地雷達訊號分析方法 46 4-1-1 利用Randan 7 軟體進行圖像判釋 47 4-1-2 利用Matlab軟體進行訊號頻譜分析 50 4-2 人工開孔與裂隙之木構件量測試驗 54 4-2-1 試驗材種確認 55 4-2-2 透地雷達分析結果 58 4-2-3 完整木構件之特徵頻譜 65 4-3 地下管線檢測試驗 66 4-3-1 單一管線案例分析 68 4-3-2 雙排管線案例分析 75 第五章 研究成果 77 5-1 台南市北區興濟宮現地檢測 77 5-1-1 研究區域介紹 77 5-1-2 透地雷達測線規劃與施測 79 5-1-3 現地試驗分析結果 82 5-1-4 綜合結果討論 101 5-2 彰化縣鹿港鎮龍山寺現地檢測 102 5-2-1 研究區域介紹 102 5-2-2 透地雷達測線規畫與施測 104 5-2-3 鹿港龍山寺現地試驗分析結果 106 5-2-4 綜合結果討論 127 5-3 成功大學安南校區煉鋼爐石研究中心現地檢測 128 5-3-1 研究區域介紹 128 5-3-2 透地雷達測線規畫與施測 129 5-3-3 成功大學安南校區煉鋼爐石研究中心現地試驗分析結果 135 5-3-4 綜合結果討論 150 第六章 結論與建議 151 6-1 結論 151 6-2 建議 152 參考文獻 153 附錄一、彰化鹿港龍山寺透地雷達探測資料 159 附錄二、口委問題與建議 173

    1. 大觀音亭祀典興濟宮官網,「http://www.da-shing.org.tw/」,2017。
    2. 鹿港龍山寺官網,「http://www.lungshan-temple.org.tw/」,2017。
    3. ICOMOS官網,「http://www.icomos.org/en/」,2017。
    4. 盧家鋒,醫學訊號分析原理與MATLAB程式應用實作,
    「https://www.youtube.com/watch?v=JxYGcmxviz8&list=PLgHBb4EzfCDPZ-Jn5e77PauL8mwksdHpp」。
    5. 中華大學土木工程學系 / 結構安全評估與非破壞性檢測實驗室,「http://web.chu.edu.tw/~ccw/」。
    6. 丁逢春,「以鋼筋透地雷達影像檢測混凝土內滲漏現象」,朝陽科技大學營建工程系碩士論文,2012。
    7. 王乾盈,「震波勘測學I-反射震測」,國立中央大學地球物理研究所授課講義,1992。
    8. 王惠濂,「探地雷達目的體物理模擬研究結果」,中國地質大學學報,第18卷,第3期,266-284頁,1993。
    9. 成功大學營繕組,國立成功大學安南校區報告書,2014。
    10. 邱君豪,「應用透地雷達探測地下埋測物及地層構造之研究」,國立成功大學土木工程研究所碩士論文,1997。
    11. 吳宏哲,「應用透地雷達與目視調查評估混凝土河堤掏空程度之研究」,國立成功大學土木工程研究所碩士論文,2011。
    12. 李德河、林宏明、許朝景、林宏泰,「透地雷達技術應用於安平古堡舊城牆遺址之探測研究工作報告書」,成功大學公共工程研究中心,2002。
    13. 李德河、賴新龍,「透地雷達非破壞性探測在考古選址之運用」,臺灣府城城垣殘跡非破壞探測考古試掘及維護工法研究計畫成果發表研討會論文集,155-190頁,2010。
    14. 李德河、林宏明、楊德新等,「臺灣古蹟及歷史建築木結構劣損檢測及評估技術研究」,文化部文化資產局,計畫編號105-05062,2016。
    15. 林明寬,「透地雷達在地下掩埋物探測之研究」,國立成功大學土木工程研究所碩士論文,2001。
    16. 林振榮、蔡明哲、王松永,「建築物木質構件保存的非破壞性評估法」,林業研究專訊,第67卷,第12期,5-7頁,2005。
    17. 周翰臨,「非貫入式電極及改變間距改善地電阻法探測地下管線與大地環境之研究」,國立成功大學土木工程研究所碩士論文,2014。
    18. 紀昭銘,「應用透地雷達法在土中異物探測之初步研究」,國立成功大學土木工程研究所碩士論文,2001。
    19. 洪崇彬、林法勤,「應用非破壞檢測技術於歷史建築木結構之探討─以臺南縣柳營吳晉淮故居為例」,文化資產保存學刊,第10卷,第2期,29–38頁,2009。
    20. 陳澤承,「由波速的量測改善透地雷達應用於古蹟遺址的探測之效益」,國立成功大學土木工程研究所碩士論文,2013。
    21. 陳彥璋、葉惠中、高蘇白、陳彥霖,「以透地雷達量測河川斷面」,農業工程學報,第58卷,第2期,13-21頁,2012。
    22. 張奇偉、林鎮華,「透地雷達電磁波法於土木工程實務應用」,第八屆公共工程非破壞檢測技術研討會論文集,83-89頁,2013。
    23. 許家豪,「建築物外牆磁磚與木構件內部缺陷檢測之研究」,國立成功大學土木工程研究所碩士論文,2010。
    24. 張嘉祥、陳弘旭、陳春杏,「傳統寺廟大木作柱構材損壞評估」,建築學報,第1卷,第18期,25-35頁,1996。
    25. 黃承傑,「透地雷達探測異物之信號分析研究」,國立成功大學土木工程研究所碩士論文,2009。
    26. 黃韋華,「透地雷達應用於地下管線探勘之研究」,國立成功大學土木工程研究所碩士論文,2005。
    27. 曾逸仁,「台灣古蹟大木構造非破壞評估之研究」,國立成功大學建築學系博士論文,2007。
    28. 黃棟群,「大木匠師陳天平執篙傳統大木作修復程序之研究-以霧峰林宅宮保第修復為例」,朝陽科技大學建築及都市設計研究所碩士論文,2006。
    29. 黃楷淳,「透地雷達與熱影像技術於地表下物體探測之應用研究」,國立成功大學土木工程研究所碩士論文,2005。
    30. 斐廣智,「透地雷達檢測技術在土木工程應用及實例」,第八屆公共工程非破壞檢測技術研討會論文集,263-299頁,2013。
    31. 楊德新、陳湘琴、王松永、蔡明哲,「非破壞性檢測技術應用於評估單板貼面定向粒片板之性質」,中華林學季刊,第36卷,第2期,199–209頁,2003。
    32. 楊德新,「應力波斷面顯像技術在漂流木應用之研究」,行政院農業委員會林務局委託研究計畫系列,計畫編號101-00-5-17,2012。
    33. 鄭閔,「以透地雷達檢測室內試樣介電常數之探討」,逢甲大學土木工程研究所碩士論文,2015。
    34. 蔡宗原,「透地雷達訊號頻譜分析應用於地下構造物材料判釋之研究」,國立成功大學土木工程研究所碩士論文,2016。
    35. 賴新龍,「非破壞檢測技術應用於淺層地工構造物之調查」,國立成功大學土木工程研究所博士論文,2010。
    36. 羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文,1998。
    37. Allred, B.J., Redman, J.D., "Location of agricultural drainage pipes and assessment of agricultural drainage pipe conditions using ground penetrating radar," Journal of Environmental and Engineering Geophysics, Vol. 15, Issue 3, 119-134, 2010.
    38. Bavusi, M., Soldovieri, F., Di Napoli, R., Loperte, A., Di Cesare, A., Ponzo, F.C., and Lapenna, V., "Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza," Italy, Journal of Geophysics and Engineering, Vol. 8, No. 3, S33, 2011.
    39. Benedetto, A., "Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain," Journal of Applied Geophysics, Vol. 71, 26-35, 2010.
    40. Benedetto, F., and Tosti,F., "GPR spectral analysis for clay content evaluation by the frequency shift method," Journal of Applied Geophysics, Vol. 97, 89-96, 2013.
    41. Bradford, J.H., "Frequency-dependent attenuation analysis of ground penetrating radar data," Geophysics, Vol. 72, No. 3, J7-J16, 2007.
    42. Chamberlain, A.T., Sellers, W., Proctor, C., and Coard, R., "Cave detection in limestone using ground penetrating radar," Journal of Archaeological Science, Vol. 27, No. 10, 957-964, 2000.
    43. Chang, C.W., Lin, C.H., and Lien, H.S., "Measurement radius of reinforcing steel bar in concrete using digital image GPR," Construction and Building Materials, Vol.23, No. 2, 1057-1063, 2009.
    44. Clark, M.R., McCann, D.M., and Forde, M.C., "Application of infrared thermography to the non-destructive testing of concrete and masonry bridges," NDT International, Vol. 36, 265-275, 2003.
    45. Davis,L., and Annan, A.P., "Ground Penetrating Radar for High Resolution Mapping of Soil and Rock Straigraphy,"Geophysics Prospecting, Vol.37, No. 5, 535-551, 1989.
    46. Geophysical Survey Systems Inc., SIR System-20 User's Manual,USA, 2002.
    47. Geophysical Survey Systems Inc., SIR System-20 User's Manual, USA, 1-51, 2014a.
    48. Geophysical Survey Systems Inc., RADAN for Windows Version7 user’s Manual, USA, 1-176, 2014b.
    49. Giles, C.L., and Wild, W.J., "Fresnel reflection and transmission at a planar boundary from media of equal refractive indices," Vol. 40, No. 3, 210–212, 1982.
    50. Grandjean, G., Gourry, J.C., and Bitri, A., "Evaluation of GPR techniques for civil engineering applications : Study on a test site," J Appl Geophys, No. 45, 141-156, 2000.
    51. Guha, S., Kruse, S.E., Wright, E.E., and Kruse, U.E., "Spectral analysis of ground penetrating radar response to thin sedimentary layers," Geophysical Research Letters, Vol. 32, Issue 23, L23304, doi:10. 1029/2005GL023933, 2005.
    52. Hatton,L., Worthington, M.H., and Makin.J., Seismic Data Processing: Theory and Practice, Blackwell Scientific, Oxford, UK, 1986.
    53. Halabe, U.B., Agrawal, S., and Gopalakrishnan, B., "Nondestructive evaluation of wooden logs using ground penetrating radar," Nondestructive Testing and Evaluation, Vol. 24, No. 4, 329-346, 2009.
    54. Ho, K.C., Gader, P.D., and Wilson, J.N., "Improving landmine detection using frequency domain features from ground penetrating radar," Geoscience and Remote Sensing Symposium, Vol. 3, 1617-1620, 2004.
    55. Klysz, G., and Balayssac, J.P., "Determination of volumetric water content of concrete using ground-penetrating radar," Cement and Concrete Research, Vol. 37, No. 8, 1164-1171, 2007.
    56. Martínez-Sala, R., Rodríguez-Abad, I., Diez Barra, R., and Capuz-Lladró, R., "Assessment of the dielectric anisotropy in timber using the nondestructive GPR technique," Construction and Building Materials, Vol. 38, 903-911, 2013.
    57. Mellett, J.S., "Location of human remains with ground penetration radar," Geological Survey of Finland, No. 16, 359-365, 1992.
    58. Milan Beres, J.r., and Haeni, F.P., "Application of ground penetrating radar methods in hydrogeologic studies," Ground Water, Vol. 29, No. 3, 131-160, 1979.
    59. Olhoeft, C., "Maximizing the information return from ground penetrating radar," journal of applied geophysics, Vol. 43, 175-187, 2000.
    60. Perez-Grcia, V., Santos-Assuncao, S., Caselles, O., Clapes, J., and Canas, J.A.,
    "Study of wood beams in buildings with ground penetrating radar," In Ground Penetrating Radar, 15th International Conference, 31-35, IEEE, 2014.
    61. Safi, K.N., Mazariegos, O.C., Lipo, C.P., and Neff, H., "Using ground penetrating radar to examine spatial organization at the late classic maya site of el ba´ul, Cotzumalhuapa, Guatemala," Geoarchaeology, Vol. 27, 410-425, 2012.
    62. Seyfried, D., Jansen, R., and Schoebel, J., "Shielded loaded bowtie antenna incorporating the presence of paving structure for improved GPR pipe detection," Journal of Applied Geophysics, Vol. 111, 289-298, 2014.
    63. Sheriff, R.E.,and Geldert, L.P., Exploration Seismology, Cambridge University Press, New York, USA, 1982.
    64. Shihab, S., and Al-Nuaimy, W., "Radius estimation for cylindrical objects detected by ground penetrating radar," Subsurface Sensing Technologies and Applications, Vol. 6, No. 2, 151-166, 2005.
    65. Skolnick, M.I., Introduction to Radar Systems, McGraw-Hill, 1980.
    66. Taner, M.T., Koehler, F., and Sheriff, R.E., "Complex seismic trace analysis, " Geophysics, Vol. 44, No. 6, 1041-1063, 1979.
    67. Tien, C.M., Razafindratsima, S., Sbartaïa, Z.M., Demontouxb, F., and Bosa, F., "Non-destructive evaluation of moisture content of wood material at GPR frequency," Construction and Building Materials, Vol. 77, 213-217, 2015.

    無法下載圖示 校內:2022-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE