簡易檢索 / 詳目顯示

研究生: 陳凱榮
Chen, Kai-Jung
論文名稱: 探討微電流應用於綠膿桿菌體外菌落之抗菌作用
Investigate Antibacterial Effects of Weak Direct Current on In-vitro Colony of Pseudomonas Aeruginosa
指導教授: 鍾高基
Chung, Kao-Chi
張志涵
Chang, Chih-Han
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 綠膿桿菌電抗菌直流電電刺激
外文關鍵詞: Pseudomonas aeruginosa, Electro-bacterial inhibition, Alternative current, Electro-stimulation
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來全球高齡化與抗藥性問題日趨嚴重,其所衍生之問題已成為公共衛生重要議題,就慢性傷口而言,以綠膿桿菌(Pseudomonas aeruginosa)感染最為常見,因多重抗藥性P.aeruginosa的增加,提高了該菌感染治療的困難度,而不適當的治療,更促使死亡率增加。因此未來於治療P.aeruginosa時,可能須找出新的治療方式,以解決P.aeruginosa多重抗藥性增加之問題。本研究探討微電流應用於綠膿桿菌體外菌落之抗菌作用。其特定目標為;(I) 確立電抗菌之體外實驗模型。(II) 探討電流對綠膿桿菌生長之影響,並利用重複性試驗找出其相關式。電抗菌原理是使用電化學反應,加速銀針釋放銀離子和電極吸附細菌之能力,且因銀對細胞作用產生細胞毒性,抑制細菌於患處生長,進而達到降低菌種數量的目的,進而有利於日後感染性傷口之應用。

    本研究首先考量電抗菌的臨床需求與功能性設計,並依照臨床感染綠膿桿菌之慢性傷口特性,設計電抗菌體外菌落實驗模型,並根據敏感性測試與菌種培養成長速率校正結果,採用菌液濃度為7.5*104及1.5*104 CFU/mL。最後,以電源供應模組來模擬預設電流刺激參數(4、0.4及0.04mA)對P.aeruginosa的抑菌效果,並利用重複性實驗來探討微電流應用於綠膿桿菌體外菌落之抗菌作用,並找出其相互關係式。根據重複性試驗結果可知,其抗菌效果與電流強度及電流刺激時間成正相關,且位於正極附近抗菌效果較佳,並出現綠膿桿菌附著物,而附著物內含活性菌量低且無法進行二次培養。當菌液濃度為7.5*104 CFU/mL,以4、0.4及0.04mA電流強度進行60分鐘實驗,其抗菌效果可達為79%、66%及59%;當菌液濃度為1.5*104 CFU/mL,以4、0.4及0.04mA電流強度進行60分鐘實驗,其抗菌效果分別為74%、43%、29%。因此本研究確立新式的體外菌落模型運用於電流抑菌效應,且可於體外模擬綠膿桿菌抗藥性產生之過程,與自體免疫之相互關係,而未來應用於治療感染綠膿桿菌慢性傷口,可提供相關參數以供參考,並且對於全球性抗藥性問題,提供一個新的治療概念,以解決P.aeruginosa多重抗藥性增加之問題。

    In the recent years, the problem of drug resistance becomes severe, and the topics of treatments for drug resistant bacteria become top sanitaria issues. Among them, treatments for Pseudomonas aeruginosa (PA) infection raise the greatest attention. The growing number of multi-drug resistance PA increases the difficulties to treat the infection, which raises the fatal rate. To solve the problem of multi-drug resistance of PA, we need an innovative solution. In this study, we will discuss how the current controls the growth of PA. Our goal is (1) to develop the model of Electro-bacterial inhibition and (2) to study how the current treatment restraints the growth of Pseudomonas. Due to the characters of having no efficient treatment and being easy to become drug resistance, Pseudomonas infection is difficult to control and costs a great amount of medical resources. Based on Electro-Chemical reaction, the Electro-bacterial inhibition accelerates the speed the silver needle emits silver ions which react with body cell to generate cell toxicity and restraint bacteria from growing around the wound, and reaches the goal of reducing the number of bacteria species. Hence, we propose the theory of electro-bacterial inhibition, which is expected to use the current to inhibit the wound to heal and to increase the strength of wound tension. Based on the theory of Electrophysiology, Microbiology, Wound healing, Electrochemistry and Biostatics, we will quantitatively analyze the relation between the strength of the current and the growth of Pseudomonas, which is expected to be adopted on the clinical practice and to ease the problem of medical resource overuse.

    The in vitro model is designed based on the clinical demands after taking into account the characteristics of the P. aeruginosa infection. In addition, the density of bacteria liquid is set at the level of 7.5*104 and 1.5*104 CFU/mL according to the sensitivity analysis and calibration of growth rate. The anti-bacteria effects of current to P. aeruginosa infection are then confirmed by adopting power supplying module and adjusting the strength of current (4, 0.4, 0.04mA). According to the repeated trials conducted, there’s a positive correlation between the current strength and the anti-bacteria effect and a positive correlation between the time to stimulate and. The anti-bacteria effect of current is notably great around the positive electrode. From the attachment found around where, the activated bacterium contains is lower and could not proceed secondary culture. In conditions where the density of bacteria liquid is 7.5*104 CFU/mL, the anti-bacteria effects of the 60-minutes trials are 79%, 66%, 59% with current levels of 4, 0.4, 0.04mA respectively. In conditions where the density of bacteria liquid is 1.5*104 CFU/mL, the anti-bacteria effect of the 60-minutes trials are 74%, 43%, 29% with current levels of 4, 0.4, 0.04mA.

    The study establishes a new standard of in vitro model used to explain how current restrains the bacteria development around wounds and to simulate the process that drug-resistance of P. aeruginosa is formed, which could be adopted to the treatment of the P. aeruginosa infection in the future and helps to resolve the problem of multi-drug resistance.

    摘要.......................................................I ABSTRACT..................................................II 致謝......................................................IV 目錄......................................................VI 表目錄..................................................VIII 圖目錄....................................................IX 第一章 緒論...............................................1 1.1 慢性傷口............................................1 1.1.1 皮膚的功能性解剖及生理機轉............................2 1.1.2 傷口癒合機轉........................................4 1.1.3 慢性傷口之盛行率和病因學..............................8 1.1.4 綠膿桿菌之流行病學..................................10 1.2 電療學............................................15 1.2.1 基本電學..........................................15 1.3 電刺激運用於生物之效應..............................16 1.3.1 電刺激對細菌增生之影響..............................16 1.3.2 電刺激對人體之影響 ..................................18 1.4 研究動機與目的.....................................20 第二章 材料與方法.........................................22 2.1 微電流抗菌體外菌落實驗模型...........................23 2.1.1 微電流抗菌臨床需求與功能性設計.......................23 2.1.2 微電流抗菌體外菌落模型設計...........................24 2.1.3 菌落培養敏感性測試及成長速率校正......................29 2.1.4 微電流參數設計實驗..................................32 2.1.5 微電流抗菌體外菌落模型之前導實驗.....................36 2.2 微電流抗菌體外菌落重複性實驗.........................39 2.2.1 體外菌落試驗模型....................................40 2.2.2 儀器設備...........................................41 2.2.3 實驗設計與流程.....................................42 2.2.4 統計分析...........................................44 第三章 結果與討論.........................................45 3.1 菌種培養敏感性測試..................................45 3.2 菌種培養成長速率校正................................46 3.3 惠斯登電橋試驗結果..................................50 3.4 電抗菌體外菌落模型之前導試驗結果......................52 3.5 電抗菌體外重複性試驗結果.............................56 第四章 結論與未來展望.....................................64 參考文獻...................................................66 附件一電抗菌體外菌落模型之前導試驗結果........................70 (I) 電抗菌體外菌落模型之前導試驗結果(菌液濃度為1.5*104 CFU/mL)........70 (II) 電抗菌體外菌落模型之前導試驗結果(菌液濃度為7.5*104 CFU/mL)........73 附件二 電抗菌體外重複性試驗結果.............................76

    1. Banerjee, R., Das, A., Ghoshal, U.C., & Sinha, A.M. (2003). Predicting mortality in patients with cirrhosis of liver with application of neural network technology. Journal of Gastroenterology and Hepatology, 18, 1054-1060.
    2. Barakate, M.S., Yang, Y.-X., & Foo, S.-H. (2000). An epidemiological survey of methicillin-resistant Staphylococcus aureus in tertiary referral hospital. Journal of Hospital Infection, 44, pp.19-26.
    3. Barret, F.F., McGehee, R.F., & Finland M (1968). Methicillin-resistant Staphylococcus aureus at Boston city hospital: bacteriologic and epidemiologic observations. New England Journal of Medicine, 279, pp.441-448.
    4. McGuckin, M., Goldman, R., Bolton, L., & Salcido, R.(2003). Clinical management extra: The clinical relevance of microbiology in acute and chronic wounds. Advances in skin & Wound care, 16(1),12-24.
    5. Elaine N. Marieb, Jon Mallatt, Patricia Brady Wilhelm. (2007), Human Anatomy, 5th, Benjamin Cummings.
    6. Nguyen, D.T., Orgill D.P., Murphy G.F. (2009). Chapter 4: The Pathophysiologic Basis for Wound Healing and Cutaneous Regeneration. Biomaterials For Treating Skin Loss. Woodhead Publishing (UK/Europe) & CRC Press (US), Cambridge/Boca Raton, p.25-57.
    7. Stadelmann, WK; Digenis, AG; Tobin, GR (1998). "Physiology and healing dynamics of chronic cutaneous wounds". American journal of surgery 176 (2A Suppl): 26S–38S. DOI:10.1016/S0002-9610(98)00183-4. PMID 9777970.
    8. Thorne, Charles H.; Beasley, Robert W.; Aston, Sherrell J.; Bartlett, Scott P.; Gurtner, Geoffrey C.; Spear, Scott L.(2007). Grabb and Smith's Plastic Surgery, 6th Edition.
    9. Midwood, K.S.; Williams, L.V.; Schwarzbauer, J.E. (2004). "Tissue repair and the dynamics of the extracellular matrix". The International Journal of Biochemistry & Cell Biology 36 (6): 1031–1037. DOI:10.1016/j.biocel.2003.12.003. PMID 15094118.
    10. Garg, H.G. (2000). Scarless Wound Healing. New York Marcel Dekker, Inc. Electronic book.
    11. Kuwahara R.T. and Rasberry R. 2007. Chemical Peels. Emedicine.com. Accessed September 15, 2007.
    12. De la Torre J., Sholar A. (2006). Wound healing: Chronic wounds. Emedicine.com. Accessed January 20, 2008.
    13. Lorenz H.P. and Longaker M.T. (2003). Wounds: Biology, Pathology, and Management. Stanford University Medical Center. Accessed January 20, 2008.
    14. Enoch, S. Price, P. (2004). Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the elderly. Worldwidewounds.com.
    15. 世界衛生組織(WHO) http://www.who.int/en/
    16. MedMarket Diligence. Worldwide Wound Management, 2009: Established and Emerging Products, Technologies and Markets in the U.S., Europe, Japan and Rest of World.
    17. Snyder, Robert J. (2005). “Treatment of nonhealing ulcers with allografts”. Clinics in Dermatology 23 (4): 388–95.
    18. Moreo, Kathleen (2005). “Understanding and overcoming the challenges of effective case management for patients with chronic wounds”. The Case Manager 16 (2): 62–3, 67.
    19. Mustoe, Thomas (2004). “Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy”. The American Journal of Surgery 187 (5): S65.
    20. Supp, Dorothy M.; Boyce, Steven T. (2005).”Engineered skin substitutes: Practices and potentials”. Clinics in Dermatology 23 (4): 403–12.
    21. P.C. Konturek, T. Brzozowski, S.J. Konturek, S. Kwiecien, A. Dembinski, E.G. Hahn.(2001), “Influence of bacterial lipopolysaccharide on healing of chronic experimental ulcer in rat.” Scand J Gastroenterol, 36, pp. 1239–1247
    22. J.W. Costerton, P.S. Stewart, E.P. Greenberg. (1999). “Bacterial biofilms: a common cause of persistent infections.” Science, 284, pp. 1318–1322
    23. K. Gjodsbol, J.J. Christensen, T. Karlsmark, B. Jorgensen, B.M. Klein, K.A. Krogfelt. (2006). “Multiple bacterial species reside in chronic wounds: a longitudinal study”. Int Wound J, 3, pp. 225–231
    24. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, Høiby N, Givskov M. “Why chronic wounds will not heal: a novel hypothesis”. Wound repair and regeneration. 2008;16; 1; p2-10.
    25. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA. “Multiple bacterial species reside in chronic wounds: a longitudinal study.” International wound journal. 2006; 3; 3; p225-31.
    26. 林梅芳(2002),「綠膿桿菌感染治療-文獻回顧」,國立成功大學臨床藥學研究所碩士論文
    27. DeBeer, D., Stoodley, P., Roe, F. & Lewandowski, Z. (1994). “Effects of biofilm structure on oxygen distribution and mass transport. Biotech”. Bioeng. 43, 1131–1138.
    28. Davies, D. G. et al. (1998).“The involvement of cell-to-cell signals in the development of a bacterial biofilm”. Science 280,295–298.
    29. David Davies,(2003). “Understanding biofilm resistance to antibacterial agents”. Nature 2,pp114-112.
    30. Monroe D (2007). “Looking for Chinks in the Armor of Bacterial Biofilms.” PLoS Biol 5(11): e307. doi:10.1371/journal.pbio.0050307
    31. Boyce, J.M. (1989). “Methicillin-resistant Staphylococcus aureus: detection, epidemiology, and control measures.” Infectious Disease Clinics of North America,193, pp.901-913.
    32. Morison, Moya J., Ovington, Liza G. (2004) “Chronic Wound Care: A Problem-Based Learning Approach.” Elsevier Science Health Science div.
    33. S Leduc(1908). Electric Ions and Their Use in Medicine. Liverpool, UK: Rebman Ltd.
    34. J. A. SPADARO, T. J. BERGER, S. D. BARRANCO, S. E. CHAPIN, AND R. O. BECKER. (1974). “Antibacterial Effects of Silver Electrodes with Weak Direct Current.” ANTIMICROBLAL AGENTS AND CHEMOTHERAPY, Nov. 1974, p. 637-642
    35. Barranco, S. D., J. A. Spadaro, T. J. Berger, and R. 0.Becker. (1974). “In vitrQ effect of weak direct current on Staphylococcus aureus”. Clin. Orthoped. Rel. Res. 100:250-255.
    36. Coward, J. E., H. S. Carr, and H. S. Rosenkranz. (1973). Silver sulfadiazine: effect on the ultrastructure of Pseudomonas aeruginosa. Antimicrob. Ag. Chemother. 3:621-624.
    37. Eb'rt, L. Ya., and A. D. Evtushenko. (1971). Changes in bacterial sensitivity to antibiotics under the action of constant electric current and products of medium electrolysis. Antibiotiki 16:641-643.
    38. Robert O. Becker, M.D.(1998). “The Body Electric: Electromagnetism And The Foundation Of Life.” William Morrow Paperbacks; 1 edition.
    39. Robert O. Becker. (1990). “Cross Currents”. Tarcher.

    無法下載圖示 校內:2017-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE