簡易檢索 / 詳目顯示

研究生: 蔡岳騰
Tsai, Yueh-Teng
論文名稱: 香椿萃取物對脂肪細胞脂質代謝調控機制之探討
Study of Toona sinensis extracts on lipid metabolism in adipocytes and adipose tissue
指導教授: 張素瓊
Chang, Sue-Joan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 香椿過氧化小體增生活化受體脂肪細胞脂肪酸氧化
外文關鍵詞: Toona sinensis Roem, peroxisome proliferator activated receptorα, adipocyte, fatty acid oxidation
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 民間傳統使用香椿(Toona sinensis Roem)來調降血糖與血脂。研究指出餵食香椿葉萃取物給予高血脂症小鼠,顯著降低小鼠血清總膽固醇、三酸甘油脂(TG)、低密度脂蛋白(LDL)、增加高密度脂蛋白(HDL),且降低LDL/HDL的比值,然而其降血脂分子機制仍未明瞭。因此本研究主要探討香椿萃取物 (Toona sinensis leaf extract, TSLE)對高脂飲食 (High Fat Diet, HFD)小鼠胰島素敏感性、脂肪細胞分化及脂質代謝相關蛋白表現量的影響。使用TSLE分別處理分化初期與分化後成熟的3T3-L1脂肪細胞,,以 Western blotting檢測分化及脂質代謝相關蛋白的表現、Real-Time PCR檢測分化相關基因、脂質生成相關基因與脂肪酸分解、氧化代謝相關基因的表現、偵測葡萄糖消耗率、觀察脂質累積、檢測活化PPARα活性,探討TSLE對脂肪細胞脂質代謝的調控。同時以HPLC進行TSLE成分鑑定,利用luciferase assay篩選成分活化PPARα活性,將有活化PPARα功能的成分處理3T3-L1,探討各成分對脂質代謝的調控。結果顯示,TSLE經由調節脂肪細胞脂質分解及脂肪酸氧化代謝路徑降低脂質累積,可開發成降血脂或減少體脂肪累積功能之保健產品。

    In the present study, HFD mice and 3T3-L1 adipocytes were used to investigate the mechanism of Toona sinensis leaf extrcts (TSLE) on lipid metabolism. High-perfomance liquid chromatography (HPLC) and PPARα-LBD luciferase assay were used to investigate the functional compounds of TSLE. Results showed that TSLE decreased lipid accumulation in adipocyte via the regulation of lipolysis and fatty acid oxidation, suggesting that TSLE is potential to develop into a function food for hypolipidemia and decreased body-fat accumulation.

    考試合格證明 I 摘要 II Abstract III 致謝 V 目錄 VI 表目錄 XI 圖目錄 XII 前言 1 文獻探討 4 肥胖的定義 4 肥胖與胰島素阻抗 5 代謝症候群 6 代謝症候群與疾病 6 代謝症候群與血脂異常 7 脂肪細胞 8 脂質的運輸 8 脂質的合成與分解 10 脂肪酸的合成 11 脂肪酸分解 12 脂肪酸氧化 β-oxidation 12 第四型葡萄糖轉運子 GLUT4 13 PPAR pathway 14 PPAR之種類 15 PPAR之結構 15 PPAR之活化劑與ligands 16 PPAR之標的基因 18 PPARα在脂肪細胞的研究 19 Adiponectin 20 香椿 21 國內外香椿研究 22 香椿葉酒精萃取物(TSLE)先前研究 23 材料與方法 24 細胞株 24 藥品 24 抗體 28 primer 28 常用buffer 29 實驗儀器 31 實驗架構 35 HFD動物模式 35 細胞模式 36 實驗動物 37 實驗方法 38 口服葡萄糖耐受性試驗 (oral glucose tolerance test, OGTT) 38 3T3-L1脂肪細胞的分化 38 MTT assay 38 油紅染色 39 蛋白質萃取 39 蛋白質定量 39 膜蛋白萃取 40 Total RNA萃取 40 DNA decontamination 41 反轉錄作用(Reverse Transcription) 41 Plasmid 的萃取 41 蛋白質電泳 42 蛋白質轉漬 42 免疫呈色 43 Real-Time PCR (Q-PCR) 43 Transfection 43 PPARα-LBD luciferase assay 44 Liquid-liquid partition分離TSLE 44 HPLC分析TSLE 45 TSLE成分定量 45 脂肪酸衍生化 45 脂肪酸衍生物分析 46 TSLE中脂肪酸成分定量 46 統計方式 46 結果 47 TSLE對HFD小鼠口服葡萄糖耐受性的影響 47 TSLE對HFD小鼠脂肪組織PPARα及adiponectin 蛋白表現的影響 47 TSLE活化PPARα評估 47 TSLE對分化初期3T3-L1細胞脂質累積的影響 48 TSLE對分化初期3T3-L1細胞分化與成熟蛋白表現的影響 48 TSLE對分化初期3T3-L1細胞分化與脂質代謝相關基因表現的影響 48 PPARα拮抗劑對分化初期3T3-L1細胞脂肪累積的影響 48 PPARα拮抗劑對分化初期3T3-L1細胞分化與脂質代謝相關基因表現的影響 49 TSLE對分化初期3T3-L1細胞葡萄糖利用率與細胞膜上GLUT4蛋白表現的影響 49 TSLE對分化後成熟3T3-L1細胞脂質累積的影響 50 TSLE對分化後成熟3T3-L1細胞分化與成熟相關蛋白表現的影響 50 TSLE對分化後成熟3T3-L1細胞脂質代謝相關基因表現的影響 50 PPARα拮抗劑對分化後成熟3T3-L1細胞脂肪累積的影響 50 PPARα拮抗劑對分化後成熟3T3-L1細胞基因表現的影響 51 TSLE液相分配萃取物活化PPARα效果評估 51 TSLE已知成分活化PPARα活性評估 51 Gallic acid與Rutin對分化初期T3-L1細胞脂肪累積的影響 52 Gallic acid與Rutin對分化初期T3-L1細胞分化與成熟相關蛋白表現的影響 52 Gallic acid與Rutin對分化初期T3-L1細胞脂質代謝相關基因表現的影響 52 TSLE中脂肪酸的組成 53 TSLE與香椿75 %酒精萃取物 (TSL-E5)成分差異 53 香椿葉各種酒精濃度萃取物活化PPARα活性 54 TSLE中脂肪酸成分活化PPARα活性 54 TSLE中脂肪酸成分對分化後成熟3T3-L1脂肪細胞基因表現的影響 55 TSLE中脂肪酸成分對分化後成熟3T3-L1脂肪細胞脂質累積的影響 55 討論 56 結論 62 參考文獻 63 圖 75

    1. 林文元、黃國晉、潘文涵、郭清輝、李弘元、莊立民、許惠恆、林幸榮、于博芮、陳慶餘、蔡美文、陳俊忠、蕭寧馨、胡啟民、蕭淑代、李麒麟、丘周萍、劉影梅、林仁德、莊峻煌、蘇矢立、杜思德、斐馰、: 國民健康局代謝症候群防治工作手冊 台灣: 行政院衛生福利部國民健康署; 2007.

    2. Reaven GM, Hoffman BB: A role for insulin in the aetiology and course of hypertension? Lancet,2,8556:435-437,1987

    3. Lepor NE, Vogel RE, National Cholesterol Education Program Adult Treatment P, III: Summary of the third report of the National Cholesterol Education Program Adult Treatment Panel III. Rev Cardiovasc Med,2,3:160-165,2001

    4. 王珮憓: 椿葉水萃取液在Alloxan所誘發的糖尿病鼠中降血糖作用之研究. 高雄醫學大學碩士論文:98,2001

    5. 黃文成: 香椿萃取物活化脂肪細胞及組織PPARγ及活性成分之探討. 成功大學碩士論文:95,2010

    6. Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ: Lxr, a Nuclear Receptor That Defines a Distinct Retinoid Response Pathway. Genes & Development,9,9:1033-1045,1995

    7. Escher P, Wahli W: Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res,448,2:121-138,2000

    8. Tsuchida A, Yamauchi T, Takekawa S, Hada Y, Ito Y, Maki T, Kadowaki T: Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes,54,12:3358-3370,2005

    9. Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, Tanne D, Matas Z, Hibuse T, Fujita K, et al: Effects of peroxisome proliferator-activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vasc Biol,27,3:635-641,2007

    10. Guzman M, Lo Verme J, Fu J, Oveisi F, Blazquez C, Piomelli D: Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem,279,27:27849-27854,2004

    11. Goto T, Lee JY, Teraminami A, Kim YI, Hirai S, Uemura T, Inoue H, Takahashi N, Kawada T: Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J Lipid Res,52,5:873-884,2011

    12. Kadowaki T, Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev,26,3:439-451,2005

    13. Staniforth JMEaM: toona sinensis(meliaceae). Bentham-Moxon Trust:11,1998

    14. Qiu N, Zhang G: The illustrated medicinal plants of Taiwan. Taipei, Republic of China: Southern Materials Center; 1983.

    15. 楊今詳: 抗癌中草藥製劑. 渡假出版社有限公司:165,1992

    16. 程劍華、李以鑌: 抗癌植物藥及其驗方. 江西科學出版社:608,1998

    17. AVRDC: Annaul Report 2003.2004

    18. Yu WJ, Chang CC, Kuo TF, Tsai TC, Chang SJ: Toona sinensis Roem leaf extracts improve antioxidant activity in the liver of rats under oxidative stress. Food Chem Toxicol,50,6:1860-1865,2012

    19. Yang HL, Chang WH, Chia YC, Huang CJ, Lu FJ, Hsu HK, Hseu YC: Toona sinensis extracts induces apoptosis via reactive oxygen species in human premyelocytic leukemia cells. Food Chem Toxicol,44,12:1978-1988,2006

    20. Yang S, Zhao Q, Xiang H, Liu M, Zhang Q, Xue W, Song B, Yang S: Antiproliferative activity and apoptosis-inducing mechanism of constituents from Toona sinensis on human cancer cells. Cancer Cell Int,13,1:12,2013
    21. Yang YC, Hsu HK, Hwang JH, Hong SJ: Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. Kaohsiung J Med Sci,19,7:327-333,2003

    22. Wang PH, Tsai MJ, Hsu CY, Wang CY, Hsu HK, Weng CF: Toona sinensis Roem (Meliaceae) leaf extract alleviates hyperglycemia via altering adipose glucose transporter 4. Food Chem Toxicol,46,7:2554-2560,2008

    23. 张京芳、张强、陆刚、周丽: 香椿葉提取物对高血脂症小鼠脂質代谢的調節作用及抗氧化功能的影響. 中國食品學報,7:5,2007

    24. Fu Y, Luo N, Klein RL, Garvey WT: Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res,46,7:1369-1379,2005

    25. Brown NF, Hill JK, Esser V, Kirkland JL, Corkey BE, Foster DW, McGarry JD: Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes. Biochem J,327 ( Pt 1):225-231,1997

    26. Vingtdeux V, Chandakkar P, Zhao H, Davies P, Marambaud P: Small-molecule activators of AMP-activated protein kinase (AMPK), RSVA314 and RSVA405, inhibit adipogenesis. Mol Med,17,9-10:1022-1030,2011

    27. Dagon Y, Avraham Y, Berry EM: AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem Biophys Res Commun,340,1:43-47,2006

    28. Choi BH, Ahn IS, Kim YH, Park JW, Lee SY, Hyun CK, Do MS: Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte. Exp Mol Med,38,6:599-605,2006

    29. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA: Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res,22,10:1367-1371,2008

    30. Ntambi JM, Young-Cheul K: Adipocyte differentiation and gene expression. J Nutr,130,12:3122S-3126S,2000

    31. Sul HS: Adipocyte differentiation and gene expression. Curr Opin Cell Biol,1,6:1116-1121,1989

    32. Hsu HK, Yang YC, Hwang JH, Hong SJ: Effects of Toona sinensis leaf extract on lipolysis in differentiated 3T3-L1 adipocytes. Kaohsiung J Med Sci,19,8:385-390,2003

    33. Haemmerle G, Moustafa T, Woelkart G, Buttner S, Schmidt A, van de Weijer T, Hesselink M, Jaeger D, Kienesberger PC, Zierler K, et al: ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-alpha and PGC-1. Nat Med,17,9:1076-1085,2011

    34. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, et al: Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab,5,6:415-425,2007

    35. De Sousa-Coelho AL, Relat J, Hondares E, Perez-Marti A, Ribas F, Villarroya F, Marrero PF, Haro D: FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res,54,7:1786-1797,2013

    36. Panagia M, Gibbons GF, Radda GK, Clarke K: PPAR-alpha activation required for decreased glucose uptake and increased susceptibility to injury during ischemia. Am J Physiol Heart Circ Physiol,288,6:H2677-2683,2005

    37. Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE: IRS1-independent defects define major nodes of insulin resistance. Cell Metab,7,5:421-433,2008

    38. Hsu CL, Lo WH, Yen GC: Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway. J Agric Food Chem,55,18:7359-7365,2007

    39. Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A: Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett,584,3:531-536,2010

    40. Choi I, Park Y, Choi H, Lee EH: Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. Biofactors,26,4:273-281,2006

    41. Hsu CL, Yen GC: Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem,55,21:8404-8410,2007

    42. Mochizuki K, Suzuki T, Goda T: PPAR alpha and PPAR delta transactivity and p300 binding activity induced by arachidonic acid in colorectal cancer cell line Caco-2. J Nutr Sci Vitaminol (Tokyo),54,4:298-302,2008

    43. Hsieh TJ, Tsai YH, Liao MC, Du YC, Lien PJ, Sun CC, Chang FR, Wue YC: Anti-diabetic properties of non-polar Toona sinensis Roem extract prepared by supercritical-CO2 fluid. Food Chem Toxicol, 50,3-4:779-789,2012

    44. La Casa C, Villegas I, Alarcón de la Lastra C, Motilva V, Martín Calero MJ: Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol, 71,1-2:45-53,2000

    45. Sheu JR, Hsiao G, Chou PH, Shen MY, Chou DS: Mechanisms Involved in the Antiplatelet Activity of Rutin, a Glycoside of the Flavonol Quercetin, in Human Platelets. J. Agric. Food Chem,52,14:4414-4418,2004

    46. Mellou F, Loutrari H, Stamatis H, Roussos C, Kolisis FN: Enzymatic esterification of flavonoids with unsaturated fatty acids: Effect of the novel esters on vascular endothelial growth factor release from K562 cells. Process Biochem ,41,9:2029-2034,2006

    47. HSU CL, WU CH, HUANG SL, YEN GC: Phenolic Compounds Rutin and o-Coumaric Acid Ameliorate Obesity Induced by High-Fat Diet in Rats. J. Agric. Food Chem,57:425-431,2009

    48. Wu CH, Lin MC, Wang HC, Yang MY, Jou MJ, Wang CJ: Rutin Inhibits Oleic Acid Induced Lipid Accumulation via Reducing Lipogenesis and Oxidative Stress in Hepatocarcinoma Cells. J. Food Sci.,76,2:T65-T72,2011

    49. Choi I, Park Y, Choi H, Lee EH: Anti-adipogenic activity of rutin in 3T3-L1 cells and mice fed with high-fat diet. Biofactors., 26,4:273-281, 2006

    50. Hao HH, Shao ZM, Tang DQ, Lu Q, Chen X, Yin XX, Wu J, Chen H: Preventive effects of rutin on the development of experimental
    diabetic nephropathy in rats. Life Sci.,91,19-20:959-967,2012

    51. Galati G & O’Brien PJ: Potential toxicity of flavonoid and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med,37:287-303,2004

    52. Hsu CL, Yen GC: Effect of gallic acid on high fat diet-induced dyslipidaemia, hepatosteatosis and oxidative stress in rats. Br J Nutr., 98:727-735, 2007

    53. Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A:Gallic acid
    induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett.,584,3:531-536,2010

    54. Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R, Leighton F: Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J.,386:471-478,2005

    55. Hsu CL, Lo WH, Yen GC: Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas- and mitochondrial-mediated pathway.
    J Agric Food Chem.,55,18:7359-6,2007

    56. Jang A, Srinivasan P, Lee NY, Song HP, Lee JW, Lee M, Jo C: Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chem Biol Interact.,174,2:109-117,2008

    57. Pariza MW, Park Y, Cook ME: Conjugated linoleic acid and the control of cancer and obesity. Toxicol Sci.,52,2:107-110,1999

    58. Lee KN, Kritchevsky D, Pariza MW: Conjugated linoleic acid and atherosclerosis in rabbits.Atherosclerosis.,108,1:19-25,1994

    59. Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW: Effect of conjugated linoleic acid on body composition in mice.
    Lipids.,32,8:853-858,1997

    60. Henriksen EJ, Teachey MK, Taylor ZC, Jacob S, Ptock A, Krämer K, Hasselwander O: Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obeseZucker rat. Am J Physiol Endocrinol Metab.,285,1:E98-E105, 2003

    61. Noto A, Zahradka P, Yurkova N, Xie X, Truong H, Nitschmann E,
    Ogborn MR, Taylor CG: Dietary conjugated linoleic acid decreases
    adipocyte size and favorably modifies adipokinestatus and insulin sensitivity in obese, insulin-resistant rats. Metabolism,56,12:1601-1611, 2007

    62. Evans M, Geigerman C, Cook J, Curtis L, Kuebler B, McIntosh M: Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes.Lipids.,35,8:
    899-910, 2000

    63. Blankson H, Stakkestad JA, Fagertun H, Thom E, Wadstein J, Gudmundsen O: Conjugated Linoleic Acid Reduces Body Fat Mass in Overweight and Obese Humans. J Nutr.,130,12:2943-2948,2000

    64. Risérus U, Berglund L, Vessby B: Conjugated linoleic acid (CLA) reduced abdominal adipose tissue in obese middle-aged men with signs of the metabolic syndrome: a randomised controlled trial. Int J Obes Relat Metab Disord.,25,8:1129-35,2001

    65. Yang L, Yuan J, Liu L, Shi C, Wang L, Tian F, Liu F, Wang H, Shao C, Zhang Q, Chen Z, Qin W, Wen W: α-linolenic acid inhibits human renal cell carcinoma cell proliferation through PPAR-γ activation and COX-2 inhibition. Oncol Lett.,6,1:197-202. 2013

    66. Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM: Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr.,134,11:2991-2997, 2004

    67. Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A: Dietary α-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis., 167,2:237-2342,2003

    68. Poudyal H, Kumar SA, Iyer A, Waanders J, Ward LC, Brown L: Responses to oleic, linoleic and α-linolenic acids in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. J Nutr Biochem., 24,7:1381-1392,2013

    69. Robinson LE, Mazurak VC: N-3 polyunsaturated fatty acids: relationship to inflammation in healthy adults and adults exhibiting features of metabolic syndrome. Lipids.,48,4:319-332,2013

    無法下載圖示 校內:2029-08-01公開
    校外:2029-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE