簡易檢索 / 詳目顯示

研究生: 汪晨暉
Wang, Chen-Hui
論文名稱: Sn-xAg-0.7Cu無鉛銲料銲點形貌與低週疲勞之研究
Low Cycle Fatigue of Sn-xAg-0.7Cu Lead-Free Solder Joints
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 91
中文關鍵詞: 無鉛銲料Sn-Ag-Cu銲點形貌低週疲勞測試裂紋成長
外文關鍵詞: Lead-free solder, Sn-Ag-Cu, Solder joint type, Low-cycle fatigue test, Fatigue crack
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於探討Ag含量(0~3wt.%)對Sn-Ag-Cu無鉛銲料微結構及特性的影響,並探討不同幾何形貌(沙漏型、桶型)之銲點疲勞性質,評估銲料低週疲勞可靠度表現。

    實驗試件利用直徑1.12±0.02 mm之錫球,與Cu基板銲接成單點剪切試件,之後再進行IMC觀察以及疲勞性質評估。結果顯示Sn-Ag-Cu三元相銲料的結構,隨著Ag含量的降低,由細小顆粒狀Ag3Sn, Cu6Sn5所組成的網狀組織密度逐漸稀疏,銲料機械強度也隨之下降。Sn-0.7Cu二元相合金由於無Ag添加,亦無網狀共晶組織析出進行散佈強化,導致其抗剪切強度最低。

    低週疲勞測試中,銲點疲勞壽命隨著Ag含量提高而增加,原因在於Ag3Sn網狀共晶組織與IMC層相互影響,而形貌不同之桶型與沙漏型銲點疲勞壽命曲線及裂紋成長模式亦不相同。以SEM觀察銲點切面,得知細小裂紋易於初晶β-Sn與析出相交界處起始,主要是因兩相強度不同,於循環受力後容易生成。裂紋成長模式取決於銲點幾何形狀、銲料基地強度與界面層強度三者交互影響,其中沙漏型銲點大部分疲勞裂紋在銲料內部成長;含Ag量較高之桶型銲點疲勞裂紋沿著IMC層以穿晶的方式成長;含Ag量較少之銲點裂紋則非直接穿裂IMC層,由接觸角引入後往銲料內部成長一小段,與分散於IMC層之微裂紋相互連結;Sn-0.7Cu二元合金,裂紋沿界面不遠處往銲料內部成長交會。綜合銲料微結構、銲點受力分析、疲勞壽命曲線與裂紋成長機制分析,研究結果顯示,Ag添加量於1.5~2.0wt.%時已可大幅增強Sn-Cu合金系銲料機械性質。

    This research is aimed to investigate the effect of Ag content (0~3wt.%) on the microstructure and the low-cycle fatigue behavior of Sn-xAg-0.7Cu lead-free solder.

    Sn-xAg-0.7Cu solder in form of solder balls with 1.12±0.02 mm in diameter were fabricated. Solder balls were reflowed with Cu substrate in the form of single lap shear specimen, and then the low-cycle fatigue test were performed. Solder alloys SAC157, SAC207 show similar microstructure features whilst SAC307 solder alloy displays a very fine microstructure with intermetallic phases dense within the β-Sn matrix. The increase in silver content enhances the mechanical strength of the solder alloy as a result of an increase in volume fraction of Ag3Sn intermetallics.

    The fatigue life test reveals that fatigue life curve of the solder joint is absolutely different between barrel type and hourglass type. From SEM observations, it can be found that micro-cracks were first generated along the boundaries between these two phases. As a result of stress concentration effects, solder joints of barrel type would fail with IMC layer fracture mode except Sn-0.7Cu. However, solder joints of hourglass type would fail with solder fracture mode except Sn-3.0Ag-0.7Cu. The cracks generally propagated in a mixed mode and linked up to form large cracks and immediately lead to final failure. Sn-xAg-0.7Cu solder with silver addition by 1.5~2.0wt.% manifest already the better mechanical properties and fatigue behavior than that another Ag addition.

    摘要 I Extended Abstract II 誌謝 VI 總 目 錄 VII 表 目 錄 IX 圖 目 錄 X 一、前言 1 二、文獻回顧 5 2-1 封裝技術簡介 5 2-2 無鉛銲錫發展概況 10 2-3 二元合金銲料 15 2-3-1 Sn-Ag 銲料系 15 2-3-2 Sn-Cu銲料系 17 2-3-3 Sn-Bi 18 2-3-4 Sn-Zn 18 2-3-5 Sn-In 18 2-4 三元合金銲料Sn-Ag-Cu 20 2-5 可靠度測試 27 2-6 等溫低週疲勞 31 2-6-1 頻率對疲勞壽命的影響 31 2-6-2 銲點幾何形貌對疲勞壽命的影響 31 2-6-3 失效定義對疲勞壽命的影響 34 2-7 實驗動機與目的 35 三、實驗步驟與方法 36 3-1 實驗規劃 36 3-2 試件製備 38 3-3 實驗內容 41 3-4 疲勞測試之參數設定 44 四、結果與討論 46 4-1 銲點形狀對低週疲勞壽命之影響 46 4-2 低週疲勞裂紋成長機制 65 4-2-1 界面IMC層形貌變化 65 4-2-2 裂紋成長機制 67 五、結論 85 六、建議與未來方向 86 七、參考文獻 87

    [1] R. R. Tummala, "Fundamentals of microsystems packaging," McGraw-Hill International Edition, Ch.7, pp. 266-294, 2001.
    [2] ESPEC Technology Report, No.13, pp. 1-8, 2002.
    [3] L. J. Turbini, G. C. Munie, D. Bernier, J. Gamalski, and D. W. Bergman, "Examining the Environmental Impact of Lead-Free Soldering Alternatives," IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, No. 1, pp. 4-9, 2001.
    [4] D. Suraski and K. Seelig, "The Current Status of Lead-Free Solder Alloys," IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, No. 4, pp. 224-248, 2001.
    [5] C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, "Comparison of Isothermal Mechanical Fatigue Properties of Lead-free Solder Joints and Bulk Solders," Materials Science and Engineering A, vol. 394, pp. 20-27, 2005.
    [6] K. S. Kim, S. H. Huh, and K. Suganuma, "Effects of Intermetallic Compounds on Properties of Sn-Ag-Cu Lead-free Soldered Joints," Journal of Alloys and Compounds, vol. 325, pp. 226-236, 2003.
    [7] R. A. Islam, Y. C. Chan, W. Jillek, and S. Islam, "Comparative Study of Wetting Behavior and Mechanical Properties (Microhardness) of Sn-Zn and Sn-Pb Solders," Microelectronics Journal, vol. 37, pp. 705-713, 2006.
    [8] R. K. Shiue, L. W. Tsay, and C. L. Lin, "A Study of Sn-Bi-Ag-(In) Lead-free Solders," Journal of Materials Science, vol. 38, pp. 1269-1279, 2006.
    [9] H. T. Lee, H. S. Lee, C. S. Lee, and P. W. Chen, "Reliability of Sn-Ag-Sb Lead-free Solder Joints," Materials Science and Engineering A, vol. 407, pp. 36-44, 2005.
    [10] 許媛婷, "Sn-Ag-Sb-xIn無鉛錫銲接點微結構與低週疲勞之研究," 國立成功大學機械研究所, 碩士論文, 2006.
    [11] 蔡宏佳, "添加In對Sn-3Ag-2Sb無鉛錫銲接點微結構與低週疲勞之研究," 國立成功大學機械研究所, 碩士論文, 2007.
    [12] P. Arulvanan and Z. W. Zhong, "Assembly and reliability of PBGA packages on FR-4 PCBs with SnAgCu solder," Microelectronic Engineering, vol. 83, pp. 2462-2468, 2006.
    [13] R. C. Lasky, A. Singer, and P. Chouta, Fiber Optic Data Communication: Technology Advances and Futures. United States: Academic Press, 2002.
    [14] O. Nousiainen, L. Lehtiniemi, T. Kangasvieri, R. Rautioaho, and J. Va¨ha¨kangas, "Thermal fatigue endurance of collapsible 95.5Sn4Ag0.5Cu spheres in LTCC/PWB assemblies," Microelectronics Reliability, vol. 48, pp. 622-630, 2008.
    [15] R. Ghaffarian, "Thermal Cycle Reliability and Failure Mechanisms of CCGA and PBGA Assemblies With and Without Corner Staking," IEEE Transactions on Components and Packaging Technologies, vol. 31, pp. 285-296, 2008.
    [16] K. N. Subramanian, "Lead-free solders: materials reliability for electronics," John Wiley & Sons, Ch.5, pp. 122-134, 2012.
    [17] N. C. Lee, "Getting Ready for Lead-free Solders," Soldering & Surface Mount Technology, vol. 9(2), pp. 65-69, 1997.
    [18] M. Abtew and G. Selvaduray, "Lead-free solders in Microelectronics," Materials Science and Engineering: R: Reports, vol. 27, pp. pp. 95-141, 2000.
    [19] B. Richard and K. Nimmo, "An Analysis of the Current Status of Lead-Free Soldering - Update 2000," Department of Trade and Industry Report, 1999.
    [20] 胡順源, "Sn-Ag-xSb 無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究," 國立成功大學機械研究所, 碩士論文, 2003.
    [21] H. Baker and H. Okamoto, "Alloy phase diagrams," ASM International, ASM Handbook, vol. 3, p. 501, 1992.
    [22] W. Yang, R. Messler, and L. Felton, "Microstructure Evolution of Eutectic Sn-Ag Solder Joints," Journal of Electronic Materials, vol. 23, pp. 765-772, 1994.
    [23] K. Suganuma, S. H. Huh, K. Kim, H. Nakase, and Y. Nakamura, "Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder," Materials Transactions, vol. 42, No.2, pp. 286-291, 2001.
    [24] K. Suganuma, "Interface Phenomena in Lead-free Soldering," Proceedings. EcoDesign'99 : First International Symposium On Environmentally Conscious Design and Inverse Manufacturing 1999, pp. 620-625, 1999.
    [25] W. Yang, L. Felton, and R. Messler, "The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints," Journal of Electronic Materials, vol. 24, pp. 1465-1472, 1995.
    [26] D. Frear, D. Grivas, and J. W. M. Jr., "The Effect of Cu6Sn5 Whisker Precipitates in Bulk 60Sn-40Pb Solder," Journal of Electronic Materials, vol. 16, pp. 181-186, 1987.
    [27] J. C. Foley, A.Gickler, F. H. Leprovost, and D. Brown, "Analysis of Ring and Plug Shear Strengths for Comparison of Lead-Free Solders," Journal of Electronic Materials, vol. 29, pp. 1258-1263, 2000.
    [28] 陳明宏, "添加Sb對Sn-Ag無鉛銲料銲點冶金性質與機械性質之研究," 國立成功大學機械研究所, 博士論文, 2003.
    [29] W. Zhai, W. L. Wang, D. L. Geng, and B. Wei, "A DSC analysis of thermodynamic properties and solidification characteristics for binary Cu-Sn alloys," Acta Materialia, vol. 60, pp. 6518-6527, 2012.
    [30] M. McCormack, H. S. Chen, G. W. Kammlott, and S. Jin, "Significantly Improved Mechanical Properties of Bi-Sn Solder Alloys by Ag-doping," Journal of Electronic Materials, vol. 26, No.8, pp. 954-958, 1997.
    [31] M. McCormack and S. Jin, "Improved Mechanical Properties in New, Pb-free Solder Alloys," Journal of Electronic Materials, vol. 23, pp. 715-720, 1994.
    [32] J. L. Freer and J. W. Morris, "Microstructure and Creep of Eutectic Indium/Tin on Copper and Nickel Substrates," Journal of Electronic Materials, vol. 21, pp. 647-652, 1992.
    [33] M. Reid, J. Punch, M. Collins, and C. Ryan, "Effect of Ag content on the microstructure of Sn-Ag-Cu based solder alloys," Soldering & Surface Mount Technology vol. 20, pp. 3-8, 2008.
    [34] P. Guruprasad and J. Pitarresi, "Comparison of Joint Level Impact Fatigue Resistance and Board Level Drop Test," IEEE Electronic Components and Technology Conference 59th, pp. 1708-1713, 2009.
    [35] S. K. Kang, W. K. Choi, D.-Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith and K. J. Puttlitz, "Ag3Sn Plate Formation in the Solidification of Near-Ternary Eutectic Sn-Ag-Cu," Journal of the Minerals, Metals and Materials Society, vol. 55, pp. 61-65, 2003.
    [36] H. W. Chiang, K. Chang, and J. Y. Chen, "The Effect of Ag Content on the Formation of Ag3Sn Plates in Sn-Ag-Cu Lead-Free Solder," Journal of Electronic Materials, vol. 35, No. 12, pp. 2074-2080, 2006.
    [37] S. Terashima, M. Tanaka, and K. Tatsumi, "Thermal fatigue properties and grain boundary character distribution in Sn-x Ag-0.5Cu (x = 1, 1.2 and 3) lead free solder interconnects," Science and Technology of Welding and Joining, vol. 13, pp. 60-65, 2008.
    [38] Y. Kariya and M. Otsuka, "Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5 mass% Ag Solder Alloy," Journal of Electronic Materials, vol. 27, pp. 866-870, 1998.
    [39] Y. Kariya and M. Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X(X=Bi, Cu, Zn, and In) Solder Alloys," Journal of Electronic Materials, vol. 27, pp. 1229-1235, 1998.
    [40] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, "Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solders 96.5Sn/3.5Ag," Journal of Electronic Materials, vol. 31, pp. 142-151, 2002.
    [41] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, "Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi, Lead-Free Solders," Journal of Electronic Materials, vol. 31, pp. 456-465, 2002.
    [42] E. W, "Fatigue life of leadless chip carrier solder joints during power cycling," IEEE Transactions on Components, Hybrids and Manufacturing Technology, vol. 6, pp. 232-237, 1993.
    [43] X. Q. Shi, H. L. J. Pang, W. Zhou, and Z. P. Wang, "Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy," International Journal of Fatigue, vol. 22, pp. 217-228, 2000.
    [44] J. H. L. Pang, K. H. Tan, X. Shi, and Z. P. Wang, "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen," IEEE Transactions on Components and Packaging Technologies, vol. 24, No. 1, 2001.
    [45] D. J. Xie, Y. C. Chan, J. K. L. Lai, and I. K. Hui, "Fatigue Life Estimation of Surface Mount Solder Joints," IEEE Transactions on Component, Packaging, and Manufacturing Technology, Part B, vol. 19, No. 3, 1996.
    [46] Z. Guo and H. conrad, "Fatigue Crack Growth Rate in 63Sn37Pb Solder Joints," Journal of electronic Packaging, vol. 115, pp. 159-164, 1993.
    [47] Z. Guo, A. F. Sprecher, D. Y. Jung, and H. Conrad, "Influence of Environment on the Fatigue of Pb-Sn Solder Joint," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 14, No. 4, pp. 833-837, 1991.
    [48] C. Kanchanomai, Y. Miyashita, Y. Mutoh, and S. L. Mannan, "Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn/3.5Ag," Materials Science and Engineering A, vol. 345, pp. 90-98, 2003.
    [49] T. H. Wang, C.-C. Wang, Y.-S. Lai, K.-C. Chang, and C.-H. Lee, "Optimization of board-level thermomechanical reliability of high performance flip-chip package assembly," Microelectronic Engineering, vol. 85, pp. 659-664, 2008.
    [50] T. Y. Tee, H. S. Ng, D. Yap, X. Baraton, and Z. Zhong, "Board level solder joint reliabitity modeling and testing of TFBGA packages for telecommunication application," Microelectronics Reliability, vol. 43, pp. 1117-1123, 2003.
    [51] K. M and H. M, "Shape prediction of solder bump joint by surface tension analysis and fatigue strength evaluation," ASME Advances in Electronic Packaging, vol. 19-2, pp. 1407-1413, 1997.
    [52] T.-H. Ju, W. Lin, Y. C. Lee, and J. J. Liu, "Effects of Ceramic Ball-Grid-Array Package's Manufacturing Variations on Solder Joint Reliability," Journal of Electronic Packaging, vol. 116, pp. 242-248, 1994.
    [53] H. D. Solomon, "Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder," Journal of Electronic Packaging, vol. 113, pp. 102-108, 1991.
    [54] H. Jiang, R. Hermann, and W. J. Plumbridge, "High-Strain Fatigue of Pb-Sn Eutectic Solder Alloy," Journal of Materials Science, vol. 31, pp. 6455-6461, 1996.
    [55] 李昭慶, "Sn-xAg-0.7Cu無鉛銲料微結構與低週疲勞研究," 國立成功大學機械研究所, 碩士論文, 2013.
    [56] J. K. Tien, B. C. Hendrix, and A. I. Attarwala, "Understanding the Cyclic Mechanical Behavior of Lead/Tin Solder," Journal of Electronic Packaging, vol. 113, pp. 115-120, 1991.
    [57] E. C. Cutiongco, S. Vaynman, M. E. Fine, and D. A. Jeannotte, "Isothermal Fatigue of 63Sn-37Pb Solder," Journal of Electronic Packaging, vol. 112, pp. 110-114, 1990.
    [58] C. Kanchanomai and Y. Mutoh, "Effect of temperature on isothermal low cycle fatigue properties of Sn-Ag eutectic solder," Materials Science and Engineering A, vol. 381, pp. 113-120, 2004.
    [59] M. Erinc, P. J. G. Schreurs, and M. G. D. Geers, "Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder," Mechanics of Materials, vol. 40, pp. 780-791, 2008.
    [60] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, "Investigation of diffusion and electromigration parameters for Cu-Sn intermetallic compounds in Pb-free solders using simulated annealing," Acta Materialia, vol. 55, pp. 2805-2814, 2007.
    [61] Cu-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
    Available: http://www.metallurgy.nist.gov/phase/solder/cusn.html
    [62] T. Y. Lee, W. J. Choi, and K. N. Tu, "Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu," Journal of Materials Research, vol. 17, No. 2, pp. 291-231, 2002.
    [63] Sn-Ag-Cu system, calculated phase diagrams, National Institute of Standards and Technology.
    Available: http://www.metallurgy.nist.gov/phase/solder/agcusn.html
    [64] J. H. Lee, A. Yu, J. H. Kim, M. S. Kim, and N. Kang, "Reaction Properties and Interfacial Intermetallics for Sn-xAg-0.5Cu Solders as a Function of Ag Content," Metals and Materials International, vol. 14, No. 5, pp. 649-654, 2008.

    無法下載圖示 校內:2019-08-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE