簡易檢索 / 詳目顯示

研究生: 鄭世楷
Cheng, Shih-Kai
論文名稱: 以聚乙烯-醋酸乙烯酯共聚物增韌聚甲基丙烯酸甲酯之研究
Study on the Toughening Poly(Methyl Methacrylate) by Ethylene-Vinyl Acetate Copolymer
指導教授: 陳志勇
Chen, Chuh-Yean
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 137
中文關鍵詞: 光學性質增韌機構耐衝擊性機械性質相行為混摻接枝共聚物三元相圖
外文關鍵詞: blends, graft copolymer, triangular phase diagram, phase behavior, mechanical property, impact resistance, toughen mechanism, optical property
相關次數: 點閱:79下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   聚甲基丙烯酸甲酯(PMMA)的光學特性是所有塑膠中最好的,而且PMMA的耐候性非常優異,具有廣泛的應用性。但是PMMA屬於脆性材料,它的耐衝擊強度並不理想。因此,本文利用聚乙烯-醋酸乙烯酯共聚物(EVA)來作為PMMA的增韌改質劑,並且採用注模成形法來製造增韌PMMA板。採用EVA的優點是因為VAc的共聚使得PE鏈段的結晶受到破壞,增加了極性,有助於與第二種聚合物的混摻。且不同於含有雙鍵結構的橡膠,EVA均為飽和鍵,不會有老化的現象,耐候性比一般橡膠好。而且常溫下EVA的折射率與PMMA相近。再加上EVA為一常見的共聚物,不同規格的EVA被大量製造出來,極容易獲得且價格低廉,所以,利用EVA作為PMMA的增韌改質劑不失為一個值得嘗試的方法。

      選用適當的EVA規格後,在研究EVA/PMMA摻混的機械性質之前,必須藉助三元相圖製作以及聚合反應過程中相形態的觀察來瞭解EVA在MMA聚合過程中相形態的變化。從實驗結果可以發現到此系統在很低的轉化率時便跨入了兩相分離區。隨著轉化率的增加,相分離越行嚴重。等到MMA的轉化率到達13.8%,系統產生了旋節分離(spinodal decomposition)的相分離形態。而系統的連續相也從EVA/MMA轉變到PMMA/MMA,開始產生了相的反轉。隨著旋節分離的發展,使得第二相逐漸變大。在有接枝物的存在之下,分散相的聚集受到阻礙而不至於形成大顆粒,並且分散相也呈現較均勻的分佈。

      利用2-乙基-己過氧酸第三丁酯(tBO)作為誘導接枝起始劑,並分別利用熔融混摻射出成形與注模成形法製造PMMA增韌板後測量其拉伸性質。兩者相較下,雖然對韌性的提昇都有幫助,但是熔融混煉法所製得的產物透明度很差,失去了PMMA的優點。採用注模成形法則可以使用簡單的程序獲得兼具透明及耐衝擊性的PMMA板。結合相形態、機械性質以及破裂面的觀察,可以歸納出此系統增韌的機構應屬於加入EVA橡膠顆粒後,使得PMMA基質由微裂紋為主的破裂行為轉變到以剪切屈服為主的破裂行為;而剪切應力的區域也會阻礙裂紋的成長而吸收更多的能量以增加韌性。除此之外,接枝物的存在增加了兩相黏著力,使得橡膠與基質間的孔穴化成長緩慢,也吸收了部分的能量。另外也發現到此種成型板具有對熱的非線性光學性質,提供了多樣的應用性。

      In comparison with the other general plastics, poly(methyl methacrylate)(PMMA) has the best optical property and the excellent weathering ability. But the poor impact resistance of PMMA sometimes restricts its application. In this research, by utilizing EVA as the impact modifier, the toughened PMMA sheets are successfully manufactured via casting process. The advantages of EVA are described as follows. First, the VAc segments destroy the PE crystalline, which results in the increasing compatibility of the polymer blend with EVA. Second, without vinyl bonds, the weathering ability of EVA is better than the common rubber. Third, the refractive index of EVA and PMMA at the ambient temperature is close to each other. At last, EVA copolymers are massive produced and the price of EVA is acceptable. Thus, the usage of EVA for toughing PMMA sheet has a lot of profits.

      After choosing the optimum specification of EVA, in order to realize the morphologies of EVA/PMMA blends, this study examines the phase changes during MMA polymerization. The ternary PMMA/MMA/EVA mixtures are considered to create triangular phase diagram, which responds the phase behaviors during polymerization. The polymer solution undergoes phase separation at the initial stage of the MMA polymerization. Additionally, the phase inversion occurs in the form of spinodal decomposition (SD) after the conversion of MMA reaches 13.8%. With the development of the SD, the coarsening of the second phase makes the combination of EVA phase. As present in the TEM results, the graft copolymer can hinder the combination of the EVA phase and prevent to form the larger particles. Thus, the uniformity of EVA particle size is also available.

      The graft copolymer can be synthesized by taking tert-butyl peroctoate (t-BO) as the induced initiator during MMA polymerization. In comparison with the melt blends and in situ blends, the toughness is improved as long as the graft copolymer exists in the blend. But the poor transparency of melt blends results in the diminution usage of PMMA. On the other hand, the transparency and toughened PMMA sheet can be successfully manufactured via casting process with the induced initiator, t-BO. After combining the morphologies, mechanical properties and the fracture surface of EVA/PMMA blends, the toughen mechanism can be concluded. After the addition of EVA, the intrinsic brittle PMMA matrix, which the fracture mainly causes by crazing, changes the main fracture mechanism to shear yielding. The yielding region also retards the growth of the craze and absorbs more applied energy. Besides, the graft copolymer increases the adhesion force between the particles and the matrix, which is hindered the cavitation of EVA particles from PMMA matrix. Moreover, a non-linear optical property with the temperature is also observed accidentally in this work.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 5   2.1 促溶劑 7   2.2 聚摻合體相結構的形成及控制 9   2.3 機械性質測試 15   2.4 增韌機構的發展 22   2.5 增韌聚甲基丙烯酸甲酯的進展 38 第三章 實驗 45   3.1 藥品 45   3.2 實驗儀器 46   3.3 實驗步驟 47 第四章 結果與討論 53   4.1 EVA規格的評估 53   4.2 EVA接枝反應的探討及其影響 54     4.2.1 接枝物對形態的影響 55     4.2.2 接枝物的熱性質 58   4.3 EVA/PMMA混摻過程相形態的探討 59     4.3.1 EVA/MMA/PMMA三元相圖 60     4.3.2 聚合反應過程相形態的觀察 64   4.4 增韌板的機械性質 68     4.4.1 抗拉測試 68       4.4.1.1 熔融混練射出試片的抗拉測試 68       4.4.1.2 注模成形板的抗拉測試 69     4.4.2 改變拉伸速度測試 71     4.4.3 Izod衝擊測試 75     4.4.4 儀控式落球衝擊試驗 76     4.4.5 增韌機構探討 79   4.5 特殊的熱-光學性質 80 第五章 結論 83 參考文獻 131 著作 136 自述 137

    1. G. F. Freeguard and M. Karmarkar, J. Appl. Polym. Sci., 15, 1649, 1971

    2. C. B. Bucknall, I. K. Parttridge and M. V. Ward, J. Mat. Sci., 19, 2064, 1984.

    3. “Principle of Polymerization 3rd”, Gegrge Odian Eds., John Wiley and Sons INC., USA, 1991.

    4. “Polymer Blends and Mixture”, D. J. Walsh, J. S. Higgins and A. Maconnaachie Eds., London, Nijhoff, 1985.

    5. M. Xanthos, Polym. Eng. Sci., 28, 1392, 1988.

    6. F. Ide and A. Hasegawa, J. Appl. Polym. Sci., 18, 963, 1974.

    7. S. Cimmino, C. Mancarella, E. Martuscelli, R. Palumbo and G. Ragosta, Polym. Eng. Sci., 24, 48, 1984.

    8. D. Paul, in “Polymer Blends”, Vol. 2, Chap. 12, D. Paul and S. Newman Eds., Academic Press, 1978.

    9. M. Xanthos and S. S. Dagli, Polym. Eng. Sci., 31, 929, 1991.

    10. G. D. Vito, N. Lanzetta, G. Maglio, M. Malinconico, P. Musto, and R. Palumbo, J. Polym., Sci. Part A: Polym. Chem., 22, 1335, 1984.

    11. N. G. Gaylord and M. Mehta, J. Polym. Sci. Part C: Polym. Lett., 20, 481, 1982.

    12. R. Greco, G. Maglio and P. V. Musto, J. Appl. Polym. Sci., 33, 2513, 1987.

    13. R. Greco, G. Maglio, P. Musto and G. Scarinzi, J. Appl. Polym. Sci., 37, 777, 1989.

    14. K. Motha and J. Seppala, Polym. Eng. Sci., 29,1579, 1989.

    15. T. Bremner and A. Rudin, Plast. Rubber Process. Appl., 13, 61, 1990.

    16. J. R. Campbell, S. Y. Hobbs, T. J. Shea and V. H. Watkins, Polym. Eng. Sci., 30, 1056, 1990.

    17. M. Xanthos, M. W. Young and J. A. Biesenberger, Polym. Eng. Sci., 30, 355, 1990.

    18. C. B. Bucknall, Plast. Rubber Process. Appl., 16, 1, 1991.

    19. K. J. Ganzeveld and L. P. B. M. Janssen, Polym. Eng. Sci., 32, 467, 1992.

    20. C. J. Wu, J. F. Kuo and C. Y. Chen, Polym. Eng. Sci., 33(20), 1329, 1993.

    21. C. J. Wu, C. Y. Chen, E. M. Woo and J. F. Kuo, J. Polym. Sci., Part A, Polym. Chem., 31(13), 3405, 1993.

    22. C. J. Wu, J. F. Kuo, C. Y. Chen and E. M. Woo, J. Appl. Polym. Sci., 52(12), 1695, 1994.

    23. N. G. Gaylord, Chemtech., July, 435, 1989.

    24. N. G. Gaylord, J. Macromol. Sci. Chem., A26, 1211, 1989.

    25. M. Y. Ju, M. Y. Chen and F. C. Chang, Macro. Chem. Phy., 201(17), 2298, 2000.

    26. F. P. Tseng, J. J. Lin, C. R. Tseng and F. C. Chang, Polymer, 42(2), 713, 2001.

    27. J. M. Huang, M. Y. Ju, C. J. Hung, W. C. Luoh and F. C. Chang, J. Appl. Polym. Sci., 87(6), 967, 2003.

    28. A. Brydon, G. M. Burnett and G. G. Cameron, J. Polym. Sci., Polym. Chem Ed., 11, 3255, 1973.

    29. A. Brydon, G. M. Burnett and G. G. Cameron, J. Polym. Sci., Polym. Chem Ed., 12, 1011, 1974.

    30. G. G. Cameron and M. Y. Qureshi, J. Polym. Sci., Polym. Chem Ed., 18, 2143, 1980.

    31. G. G. Cameron and M. Y. Qureshi, J. Polym. Sci., Polym. Chem Ed., 18, 3149, 1980.

    32. C. B. Bucknall, in “Comprehensive Polymer Science”, Vol. 7, Chap. 2, S. L. Aggarwal Eds., Pergamon Press, Oxford, 1989.

    33. G. Eastmond, Colloid Polym. Sci., 262, 627, 1984.

    34. A. Donald and E. Kramer, J. Mater. Sci., 17, 1765, 1982.

    35. A. Donald and E. Kramer, J. Mater. Sci., 17, 2351, 1982.

    36. G. Freeguard and M. Karmakar, J. Polym. Sci., 16, 1775, 1975.

    37. H. Keskkula, in “Toughening of Plastics”, The Plastics and Rubber Institute, London, 1978.

    38. H. Keskkula, Appl. Polym. Symp., 7, 35, 1968.

    39. H. Baer, J. Appl. Polym. Sci., 16, 1109, 1972.

    40. H. Keskkula, Plastics and Rubber Mater. Appl., 19(5), 66, 1979.

    41. J. Fischer, Angew. Makromol. Chem., 33, 35, 1973.

    42. H. Keskkula, in “Polymer Compatibility and Incompatibility: principles and practice”, K. Sole Eds., MMI press, 1982.

    43. 胡德, 高分子物理與機械性質, 渤海堂, 1994.

    44. ASTM D256, Annual ASTM Standards, Part 27, Amer. Soc. Testing Mater., Philadelphia.

    45. D. R. Morey, Ind. Eng. Chem., 37, 255, 1945.

    46. “Encyclopedia of Polymer Science and Technology, Vol. 7”, H. Burns Eds., Interscience, New York, 1967.

    47. “Impact Tests and Service Performance of Thermoplastics”, P. I. Vincent Eds., Plastics Inst., London, 1971.

    48. J. Wunk, T. C. Ward and J. E. McGrath, Polym. Eng. Sci., 21, 313, 1981.

    49. 陳俊宏, 工業技術, 131期, 46, 中華民國74年5月.

    50. P. Zoller, Polym. Test., 3, 197, 1983.

    51. S. Turner, P. E. Reed and M. Money, Plast. Rubber Process. Appl., 4, 369, 1984.

    52. H. Gonzalez and W. J. Stowell, J. Appl. Polym. Sci., 20, 1389, 1976.

    53. F. H. Merz, G. C. Claver and M. Bear, J. Polym. Sci., 22, 325, 1956.

    54. S. Newman and S. Strella, J. Appl. Polym. Sci., 9, 2297, 1965.

    55. C. B. Bucknall and R. Smith, Polymer, 6, 437, 1965.

    56. R. Kambour, J. Polym. Sci. Macromol. Rew., 7, 1, 1973.

    57. J. Schmitt and H. Keskkula, J. Appl. Polym. Sci., 3, 132, 1960.

    58. C. B. Bucknall, D. Clayton and W. Keast, J. Mater. Sci., 7, 1443, 1972.

    59. M. Grancio, Polym. Eng. Sci., 12, 213, 1972.

    60. N. Farrar and E. Kramer, Polymer, 22, 691, 1981.

    61. C. B. Bucknall, in “Polymer Blends”, D. Paul and S. Newman Eds., Academic Press, Vol. 2, Chap. 14.

    62. J. Silberberg and C. Han, J. Appl. Polym. Sci., 22, 599, 1978.

    63. “Toughened Plastics”, C. B. Bucknall Eds., Applied Science Publishers Ltd., London, 1977.

    64. A. Donald and E. Kramer, J. Polym. Sci. Phys. Ed., 20, 899, 1982.

    65. E. Kramer, in “Polymer Compatibility and Imcompatibility: Principles and Practice”, K. Solc, Eds., MMI Press, 251, 1982.

    66. S. Wu, Polymer, 26, 1855, 1985.

    67. S. Wu, Polym. Eng. Sci., 30, 753, 1990.

    68. S. Wu, Polym. Int., 29, 229, 1992.

    69. Imperial Chemical Industries Ltd., Br. 1,093,909, 1967.

    70. Rohm and Hass, Br. 1,340,025, 1973.

    71. Rohm and Hass, Br. 1,414,187, 1975.

    72. E. I. Du Pont de Nemours and Company GB. 2,039,496A, 1980.

    73. P. A. Lovell, J. McDonald, D. E. J. Saunders, M. N. Sheratt and R. J. Young, in “Toughened Plastics I: Science and Engineering”, C. K. Riew and A. J. Kinloch Eds.; American Chemical Society, Washington, DC, 1993.

    74. P. A. Lovell, J. MacDonald, D.E.J. Saunders, M. N. Sheratt and R. J. Young, Plast. Rubber Process. Appl., 16(1), 37, 1991.

    75. P. A. Lovell, J. MacDonald, D.E.J. Saunders, M. N. Sheratt and R. J. Young, Polym. Mat. Sci. Eng., 63, 583, 1990.

    76. P. A. Lovell, J. MacDonald, D.E.J. Saunders and R. J. Young, Polymer, 34(1), 61, 1991.

    77. B. Immirzi, M. Malinconico and E. Martuscelli, Polymer, 32(2), 364, 1991.

    78. A. K. Gupta, B. K. Ratnam and K. R. Srinivasan, J. Appl. Polym. Sci., 45, 1303, 1992.

    79. R. C. L. Dutra, B. G. Soares, M. M. Gorelova, J. L. G. Silva, V. L. Lourenco and G. E. Ferreira, J. Appl. Polym. Sci., 66, 2243, 1997.

    80. R. L. Mcevoy and S. Krause, J. Appl. Polym. Sci., 64, 2221, 1997.

    81. T. K. Kang, Y. Kim, G. Kim, W. J. Cho and C. S. Ha, Polym. Eng. Sci., 37(3), 603, 1997.

    82. J. Xie, H. Ye, Q. Zhang, L. Li and M. Jiang, Polym. Int., 44, 35, 1997.

    83. C. Thaumaturgo and E. E. C. Monteiro, Polym. Bull., 39, 519, 1997.

    84. M. M. Coleman, C. J. Serman, D. E. Bhagwagav and P. C. Painter, Polymer, 31, 1187, 1990.

    85. C. A. CruzRamos and D. R. Paul, Macromolecules, 22, 1289, 1989.

    86. E. E. C. Monteiro and C. Thaumaturgo, Polym. Bull., 30, 697, 1993.

    87. P. A. Lovell, J. L. Stanford. Y. F. Wang and R. J. Young, Macromolecules, 31, 834, 1998.

    88. X. M. Xie, T. J. Xiao, Z. M. Zhang and A. Tanioka, J. Coll. Int. Sci., 206, 189, 1998.

    89. W. Chen, J. Wu and M. Jiang, Polymer, 39(13), 2867, 1998.

    90. M. A. Monedero, G. S. Luengo, S. Moreno, F. Ortega, R. G. Rubio, M. G. Prolongo and R. M. Masegosa, Polymer, 40, 5833, 1999.

    91. 吳培熙,張留城, 聚合物共混改性, 中國輕工業出版社, 1996, pp.243-250.

    92. R. D. Deanin, T. J. Pickett and J. C. Huang, Polym. Mater. Sci. Eng., 61, 950, 1989.

    93. B. G. Soares, R.V. Barbosa and J. C. Covas, J. Appl. Polym. Sci., 65, 2141, 1997.

    94. M. A. R. Moraes, A. C. F. Moreira, R. V. Barbosa and B. G. Soares, Macromolecules, 29, 416, 1996.

    95. R. V. Barbosa, M. A. R. Moraes, A. S. Gomes and B. G. Soares, Macromol. Rep., A32 (Suppls. 5&6), 663, 1995.

    96. S. K. Cheng, C. C. Wang and C. Y. Chen, Polym. Eng. Sci., in press, 2003.

    97. S. K. Cheng, P. T. Chen, C. C. Wang and C. Y. Chen, J. Appl. Polym. Sci., in press, 2003.

    98. P. Laurienzo, M. Malinconico, G. Ragosta and M. G. Volpe, Angew. Makromol. Chem., 170, 137, 1989.

    99. P. Laurienzo, M. Malinconico, E. Martuscelli, G. Ragosta and M. G. Volpe, J. Appl. Polym. Sci., 44, 1883, 1992.

    100. P. Laurienzo, M. Malinconico, E. Martuscelli, G. Ragosta and M. G. Volpe, Ital. C.N.R. Pat. 47,946,A89.

    101. H. Bartl and D. Hardt, Adv. Chem. Ser., 91, 477, 1969.

    102. H. Alberts, H. Bartl and R. Kuhn, Adv. Chem. Ser., 142, 214, 1975.

    103. 陳柏村, 八十八年國立成功大學化工系碩士論文。

    104. Von U. Johnsen, G. Nachtrab and H. G. Zachmann, Kolloid-Z.u.Z. Polymere, 240, 756, 1970.

    105. Von G. Nachtrab and H. G. Zachmann, Bd 74, Nr. 8/9, 837, 1970.

    106. “Thermodynamics of Polymer Solutions, Vol. 1”, Michio Kurata Eds., Hardwood Academic Publishers, 1982.

    107. G. M. Bristow and W. F. Waston, Trans Faraday Soc., 54, 1731, 1958.

    108. ”Polymer Handbook, 2nd ed.”, J. Brandrup and E. H. Immergut Eds., Wiley-Interscience, New York, 1975.

    109. “Introduction to Physical Polymer Science, 2nd ed.”, L. H. Sperling, Eds., John Wiley and Sons, Singapore, 1992.

    110. S. Reich, Phys. Lett., 114A, 90, 1986.

    111. “Fracture Behavior of Polymers”, A. J. Kinloch and R. J. Young Eds., Applied Science Publishers, London and NewYork, 1983.

    112. T. Kuboki, P. Y. B. Jar, K. Takahashi and T. Shinmura, Macromolecules, 35, 3584, 2002.

    113. O. Julien, Ph. Béguelin, L. Monnerie and H. H. Kausch, in “Toughened Plastics II”, American Chemical Society, Washington DC, 1996.

    114. U. Bernini, G. Carbonara, M. Malinconico, P. Mormile, P. Russo and M. G. Volpe, Appl. Opt., 31(27), 5794, 1992.

    115. U. Bernini, P. Russo, M. Malinconico, E. Martuscelli, M. G. Volpe and P. Mormile, J. Mater. Sci., 28, 6399, 1993.

    116. U. Bernini, L. De Stefano, M. Feo, P. Mormile and P. Russo, Opt. Commun., 112, 169, 1994.

    117. U. Bernini, M. Malinconico, E. Martuscelli, P. Mormile, A. Novellino, P. Russo and M. G. Volpe, J. Mater. Process. Tech., 55, 224, 1995.

    下載圖示 校內:立即公開
    校外:2003-05-15公開
    QR CODE