簡易檢索 / 詳目顯示

研究生: 張瀚文
Chang, Han-Wen
論文名稱: 非對稱複材疊層板之邊界元素設計
BEM Design for the Analysis of Unsymmetric Composite Laminates
指導教授: 胡潛濱
Hwu, Chyanbin
梁燕祝
Liang, Yen-Chu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 79
中文關鍵詞: 複合材料偶合問題非對稱疊層邊界積分式邊界元素法
外文關鍵詞: BEM, RDBEM, boundary integral equations, regular direct boundary element method, composite laminates, boundary element method, bending-stretching coupling
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了新的邊界元素法,解決異向性複材疊層板之伸縮-彎矩偶合問題。利用異向性彈性力學的史磋方程式,可以獲得異向性複材疊層板的伸縮-彎矩偶合問題之位移與曳引力基本解。此外,可根據貝蒂互換定律,推得伸縮-彎矩偶合問題之邊界積分方程式。爾後,此類問題的邊界元素方程式如是建立。本論文研究目標不止關注在面積分與角點力的處理上,還包括對於邊界源點所在位置造成之影響進行討論。為了呈現本方法的精確度與效率,數值結果包括與正解和目前可用以比較之商用軟體模擬結果作驗證。其結果顯示本論文新發展之邊界元素法,對處理伸縮-彎矩偶合問題,具備高效率與高準確率之特色。

    A new algorithm has been developed to deal with the bending-stretching coupling problems of layered anisotropic plates in this thesis. By employing Stroh-like formalism for anisotropic elasticity, the fundamental solutions of displacements and tractions for the bending-stretching coupling analysis of composite laminates have been obtained. Moreover, according to the reciprocal theorem of Betti and Raleigh, the boundary integral equations for the bending-stretching coupling analysis have also been derived. Thus, the boundary element formulation for the bending-stretching coupling analysis of composite laminates is established. The aim of this thesis is focused not only on the treatment of the domain integrals and corner force, but also the position of boundary source points. Numerical results are demonstrated to show the accuracy and efficiency by comparing with either the exact solutions or with results from alternative numerical techniques. The present BEM algorithm is found to be efficient and accurate for the bending-stretching coupling analysis.

    摘要 英文摘要 致謝 目錄……………………………………………………………… i 表目錄…………………………………………………………… iii 圖目錄…………………………………………………………… iv 符號說明………………………………………………………… v 第一章 緒論………………………………………………………1 1.1 文獻回顧…………………………………………………… 1 1.2 目前問題……..…………………………………………… 2 第二章 伸縮-偶合問題………………………………………… 4 2.1 類史磋方程式……………………………………………… 4 2.2 合力以及合力矩…………………………………………… 5 2.3 基本解……………………………………………………… 7 第三章 邊界元素設計…………………………………………… 9 3.1 邊界積分方程式…………………………………………… 9 3.2 邊界元素方程式…………………………………………… 15 3.2.1 常態邊界元素直接法 (RDBEM)………………………… 15 3.2.2 邊界元素………………………………………………… 16 3.2.3 邊界積分式離散化……………………………………… 16 3.3 內點位移、應力合力以及合力矩之計算………………… 19 3.4 邊界元素之矩陣內容配置………………………………… 19 3.4.1 邊界點計算……………………………………………… 19 3.4.2 內點計算………………………………………………… 25 第四章 數值模擬與結果討論…………………………………… 37 4.1 數值方法…………………………………………………… 37 4.2 數值結果…………………………………………………… 39 4.2.1 執行範例………………………………………………… 39 4.2.2 常態邊界元素法之收斂討論…………………………… 41 4.2.3 特徵值與特徵向量……………………………………… 41 4.3 結論與未來建議…………………………………………… 42 參考文獻………………………………………………………… 44 附表……………………………………………………………… 46 附圖……………………………………………………………… 53 自述

    1. Green, A.E. (1943). A note on stress systems in aelotropic materials. Philosophical Magazine. 34, 416-418.
    2. Brebbia, C. A., Telles, J.C.F. and Wrobel, L.C. (1984). Boundary Element Techniques. Springer, New York.
    3. Hwu, C. and Ting, T.C.T. (1989). Two-dimensional problems of the anisotropic elastic solid with an elliptic inclusion. The Quarterly Journal of Mechanics and Applied Mathematics. 42, 533-572.
    4. Stroh, A.N. (1958). Dislocations and cracks in anisotropic elasticity. Philosophical Magazine. 7, 625-646.
    5. Hwu, C. and Yen, W.J., Green’s functions of two-dimensional anisotropic plates containing an elliptic hole, International Journal of Solid and Structures. 27(13), 1705-1719.
    6. El Sebai, N.A.S. (1982). An Investigation of the Regular Boundary Element Method in Three Dimensional Analysis. PhD thesis, University of Sheffield.
    7. Wearing, J.L., Paterson, C., Sheikh, M.A. and Abdul Rahman, M.G. (1987). A regular indirect boundary element method for stress analysis. Proceedings of the 9th International Conference on Boundary Element Methods. 2, 183-188
    8. Wearing, J.L. and Bettahar, O. (1995). The analysis of plate bending problems using the regular direct boundary element method. Engineering Analysis with Boundary Elements. 16(3), 261-271.
    9. Stern, M. (1979). Boundary integral equations for bending of thin plates. Progress in Boundary Element Methods. Pentech Press, London; Springer-Verlag, New York, 158-181.
    10. Stern, M. (1979). A general boundary integral formulation for the numerical solution of plate bending problems. International Journal of Solid and Structures. 15, 769-782.
    11. Stern, M. and Lin, T.L. (1986). Thin Elastic Plates in Bending. Developments in Boundary Element Method. 4, 91-119.
    12. Becker, W. (1995). Concentrated forces and moments on laminates with bending extension coupling. Composite Structures. 30, 1-11.
    13. Becker, W. (1991). A complex potential method for plate problems with bending extension coupling. Archive of Applied Mechanics. 61, 318-326.
    14. Hwu, C. (2003). Green’s function for the composite laminates with bending extension coupling. Composite Structures. 63, 283-292.
    15. Hwu, C. (2003). Stroh-like formalism for the coupled stretching-bending analysis of composite laminates. International Journal of Solid and Structures. 40(13/14), 3681-3705.
    16. Hwu, C. (2003). Stroh-like complex variable formalism for bending theory of anisotropic plates. ASME Journal of Applied Mechanics. 70(5), 696-707.
    17. Hwu, C. (2003). Stroh formalism and its extensions to coupled inplane-bending problems. The Chinese Journal of Mechanics, Series A. 19(1), 41-53 [Special issue to celebrate Prof. T.C.T. Ting’s 70th birthday].
    18. Ugural, A.C. (1999). Stresses In Plate and Shells. WCB/McGraw-Hill, 2nd Edition.
    19. Hsieh, M.C., Hwu, C. (2003). Anisotropic elastic plates with holes/cracks/inclusions subjected to out-of-plane bending moments. International Journal of Solid and Structures. 39(19), 4905-4925.
    20. Hsieh, M.C. and Hwu, C. (2003). Explicit solutions for the coupled stretching-bending problems of holes in composite laminates. International Journal of Solid and Structures. 40(15), 3913-3933.
    21. Hwu, C. (2004). Green’s function for the composite laminates with bending extension coupling. Composite Structures. 63, 283-292.
    22. Sokolnikoff, I.S. (1956). Mathematical Theory of Elasticity. McGraw Hill, 2nd Edition.
    23. Ameen, M. (2001). Boundary Element Analysis: Theory and
    Programming. Narosa Publishing House, India, 129-132.
    24. Hwu, C. (2005). Green's functions for holes/cracks in laminates with stretching-bending coupling. ASME Journal of Applied Mechanics. 72, 282-289.

    下載圖示 校內:2008-07-26公開
    校外:2008-07-26公開
    QR CODE