簡易檢索 / 詳目顯示

研究生: 高增婷
Kao, Tseng-Ting
論文名稱: 建立具誘發性葉酸缺乏之斑馬魚模式並用以探討因葉酸缺乏所導致胚胎發育異常之機轉
An inducible folate deficient model in zebrafish reveals impaired neurogenesis and hematopoiesis caused by folate deficiency
指導教授: 傅子芳
Fu, Tzu-Fun
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 74
中文關鍵詞: 葉酸缺乏γ-穀氨酸水解酶斑馬魚出生缺陷
外文關鍵詞: folate deficiency, γ–glutamyl hydrolase, zebrafish, birth defects
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉酸是胚胎發育必需的營養素。懷孕婦女未能攝取充足的葉酸將會增加其胎兒獲得先天性神經管缺陷的風險。然而對於葉酸缺乏造成的出生缺陷的作用機轉還未完全了解。斑馬魚是一個研究發育生物學有利的動物模式,但是要利用控制魚的飲食來造成葉酸缺乏卻極其困難。在本研究中利用熱休克啟動子控制γ-穀氨酸水解酶的異位表達,建立一誘發性葉酸缺乏斑馬魚動物模式。γ-穀氨酸水解酶的功能是藉由去除葉酸結構上鍵結的多穀氨酸來促進細胞內葉酸的運送。我們發現在此動物模式中葉酸缺乏的嚴重程度和γ-穀氨酸水解酶的表現量呈正相關。且葉酸缺乏的斑馬魚胚胎展現了臨床相關疾病特徵,包括:異常的神經管閉合、頭臉部及眼睛的發育異常和受損的造血功能。這些發育缺陷藉由補充葉酸都能夠部分恢復,顯示葉酸缺乏造成疾病產生的因果特異性。我們也發現在葉酸缺乏的胚胎中神經細胞和後側線基原細胞的正常遷移受到阻擾,進一步探討顯示氧化壓力和細胞外訊號調節激酶的訊號路徑很可能參與在葉酸缺乏導致的先天性異常。以上的結果顯示此新發展出的動物模式能提供做為另一實驗脊椎動物平台應用於活體研究葉酸缺乏相關致病機轉。

    Folate is an essential nutrient, which is especially important for embryogenesis. Insufficient folate intake in pregnant women was reported to increase the risk of delivering the fetus with congenital defects including neural tube defects. However, the etiology for folate deficiency-associated birth defects is not fully understood. Zebrafish is a powerful model organism for developmental biology research. However, to establish a folate deficient zebrafish via dietary control is difficult and impractical. In present study, we established a heat-shock induced folate deficient zebrafish model by ectopically expressing γ–glutamyl hydrolase (GGH), the enzyme removing the polyglutamyl moiety of folate and facilitating the exportation of intracellular folate. We found that the extent of folate deficiency in GGH-overexpressing transgenic embryos was positively correlated to the expression level of GGH. These folate deficient embryos exhibited the characteristic phenotypes of folate deficiency, including impeded neural tube closure, craniofacial and ophthalmic abnormalities and impaired hematopoiesis. These anomalies were partly reversed by folate supplementation, suggesting a cause-and-consequence specificity. Our results also showed that the migration of neural crest cells and posterior lateral line primordia were obstructed in folate deficient transgenic embryos. Further investigation suggested that oxidative stress and ERK signal pathway were likely to be involved in the occurrence of abnormalities caused by folate deficiency. Our results suggested that this newly developed model can serve an alternative platform of vertebrate for studying folate-deficiency associated pathogenesis in vivo.

    摘要 I Abstract II Acknowledgements III Contents IV Contents of tables and figures VIII Abbreviations X I. Introduction 1 1.1 General introduction: Folate and one carbon metabolism (OCM) 1 1.1.1 Structure of folate 1 1.1.2 Biological availability 1 1.1.3 OCM and related biosynthetic pathways 2 1.1.4 Gamma gl utamyl hydrolase 3 1.1.5 Folate de ficiency-associated pathologies 3 1.2 Neural tube defects (NTD) 4 1.3 Current folate deficient models 5 1.4 Zebrafish model 6 1.4.1 In ge neral 6 1.4.2 Advantages in folate related studies 6 1.4.3 Limitations in folate related studies 7 II. Rationale of this study 8 III. Specific aims 8 IV. Materials and methods 9 4.1 Constructs 9 4.2 Transgenic lines generation and fish care 10 4.3 Heat shock condition 11 4.4 Compounds treatment for embryos and larvae 11 4.5 Folates content analysis of embryos and cultured cells 12 4.6 Whole mount in situ hybridization 12 4.7 Neuromast staining with 4-di-2-Asp 13 4.8 Hemoglobin staining with O-dianiside 13 4.9 Epiboly analysis 14 4.10 Hard bone staining with Calcein dye 14 4.11 Cryosection and histochemistry 14 4.12 Western blotting 15 4.13 Cell culture and transfection 15 4.14 Statistics 16 V. Results 17 5.1 Ectopic expression of GGH in cytosol reduced intracellular folate level 17 5.2 Endogenous GGH was hardly detectable in wild type embryos during early embryogenesis 17 5.3 The establishment of inducible folate deficiency zebrafish lines 18 5.3.1 Tg (zhs70:EGFP-GGH) 18 5.3.2 Tg (lfabp:mCherry;zhs70:EGFP-GGH) 18 5.3.3 Tg (zhs70:EGFP-GGHC108A) 19 5.4 Characterizations of folate deficiency zebrafish lines 19 5.4.1 The establishment of heat shock protocol (39 ℃, 1hour) 19 5.4.2 The correlations among green fluorescence intensity, EGFP-GGH protein levels, and folate deficiency in FD embryos 20 5.5 The neurulation period was sensitive to folate deficiency and critical for folate deficiency- associated abnormalities 21 5.6 Phenotypic characterizations on folate deficient (FD) embryos 21 5.6.1 FD impeded neural tissue formation 21 5.6.2 FD caused hematopoietic anomaly 22 5.6.3 FD impeded the development of neural crest cells derived non-neural tissues 23 5.7 Folate supplementation rescued the abnormalities in FD embryos 23 5.8 Folate deficiency inhibited cell migration 24 5.8.1 The migration of NCCs was disrupted in FD embryos 24 5.8.2 The participant of Wnt signaling 25 5.8.3 The interrupted (collective) cell migration in FD embryos 25 5.9 ERK activation attributed to the folate deficiency-associated hematopoietic anomalies 27 VI. Discussion 28 VII. Conclusion 35 VIII. References 36 IX. Tables 47 X. Figures 50 XI. Appendices 68 XII. Author 74

    1. Rezk, B. M., Haenen, G. R., van der Vijgh, W. J., and Bast, A. (2003) Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett 555, 601-605
    2. Ye, Y. L., Chan, Y. T., Liu, H. C., Lu, H. T., and Huang, R. F. (2009) Depleted folate pool and dysfunctional mitochondria associated with defective mitochondrial folate proteins sensitize Chinese ovary cell mutants to tert-butylhydroperoxide-induced oxidative stress and apoptosis. J Nutr Biochem 21, 793-800
    3. Waller, J. C., Alvarez, S., Naponelli, V., Lara-Nunez, A., Blaby, I. K., Da Silva, V., Ziemak, M. J., Vickers, T. J., Beverley, S. M., Edison, A. S., Rocca, J. R., Gregory, J. F., 3rd, de Crecy-Lagard, V., and Hanson, A. D. (2010) A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proc Natl Acad Sci U S A 107, 10412-10417
    4. Ifergan, I., and Assaraf, Y. G. (2008) Molecular mechanisms of adaptation to folate deficiency. Vitam Horm 79, 99-143
    5. Schneider, E., and Ryan, T. J. (2006) Gamma-glutamyl hydrolase and drug resistance. Clin Chim Acta 374, 25-32
    6. Gregory, J. F., 3rd. (1997) Bioavailability of folate. Eur J Clin Nutr 51 Suppl 1, S54-59
    7. Anderson, D. D., Woeller, C. F., Chiang, E. P., Shane, B., and Stover, P. J. (2012) Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 287, 7051-7062
    8. Anderson, D. D., Eom, J. Y., and Stover, P. J. (2012) Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 287, 4790-4799
    9. Anderson, D. D., Woeller, C. F., and Stover, P. J. (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clinical chemistry and laboratory medicine : CCLM / FESCC 45, 1760-1763
    10. Stover, P. J., and Field, M. S. (2011) Trafficking of intracellular folates. Advances in nutrition 2, 325-331
    11. Di Pietro, E., Sirois, J., Tremblay, M. L., and MacKenzie, R. E. (2002) Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Molecular and cellular biology 22, 4158-4166
    12. Momb, J., Lewandowski, J. P., Bryant, J. D., Fitch, R., Surman, D. R., Vokes, S. A., and Appling, D. R. (2013) Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci U S A 110, 549-554
    13. Shane, B. (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45, 263-335
    14. Galivan, J., Ryan, T. J., Chave, K., Rhee, M., Yao, R., and Yin, D. (2000) Glutamyl hydrolase. pharmacological role and enzymatic characterization. Pharmacol Ther 85, 207-215
    15. Ifergan, I., Jansen, G., and Assaraf, Y. G. (2008) The reduced folate carrier (RFC) is cytotoxic to cells under conditions of severe folate deprivation. RFC as a double edged sword in folate homeostasis. J Biol Chem 283, 20687-20695
    16. Daly, L. E., Kirke, P. N., Molloy, A., Weir, D. G., and Scott, J. M. (1995) Folate levels and neural tube defects. Implications for prevention. JAMA 274, 1698-1702
    17. Beaudin, A. E., and Stover, P. J. (2009) Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol 85, 274-284
    18. Wilson, R. D., Johnson, J. A., Wyatt, P., Allen, V., Gagnon, A., Langlois, S., Blight, C., Audibert, F., Desilets, V., Brock, J. A., Koren, G., Goh, Y. I., Nguyen, P., and Kapur, B. (2007) Pre-conceptional vitamin/folic acid supplementation 2007: the use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. J Obstet Gynaecol Can 29, 1003-1026
    19. Maloney, C. A., Hay, S. M., and Rees, W. D. (2009) The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring. The British journal of nutrition 101, 1333-1340
    20. Oyama, K., Sugimura, Y., Murase, T., Uchida, A., Hayasaka, S., Oiso, Y., and Murata, Y. (2009) Folic acid prevents congenital malformations in the offspring of diabetic mice. Endocr J 56, 29-37
    21. Young, S. N. (2007) Folate and depression--a neglected problem. Journal of psychiatry & neuroscience : JPN 32, 80-82
    22. Clayton, P. T., Smith, I., Harding, B., Hyland, K., Leonard, J. V., and Leeming, R. J. (1986) Subacute combined degeneration of the cord, dementia and parkinsonism due to an inborn error of folate metabolism. Journal of neurology, neurosurgery, and psychiatry 49, 920-927
    23. Hyland, K., Smith, I., Bottiglieri, T., Perry, J., Wendel, U., Clayton, P. T., and Leonard, J. V. (1988) Demyelination and decreased S-adenosylmethionine in 5,10-methylenetetrahydrofolate reductase deficiency. Neurology 38, 459-462
    24. Macreadie, I., Lotfi-Miri, M., Mohotti, S., Shapira, D., Bennett, L., and Varghese, J. (2008) Validation of folate in a convenient yeast assay suited for identification of inhibitors of Alzheimer's amyloid-beta aggregation. Journal of Alzheimer's disease : JAD 15, 391-396
    25. Jakubowski, H. (1999) Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels. FASEB J 13, 2277-2283
    26. Perna, A. F., De Santo, N. G., and Ingrosso, D. (1997) Adverse effects of hyperhomocysteinemia and their management by folic acid. Mineral and electrolyte metabolism 23, 174-178
    27. Unnikrishnan, A., Prychitko, T. M., Patel, H. V., Chowdhury, M. E., Pilling, A. B., Ventrella-Lucente, L. F., Papakonstantinou, E. V., Cabelof, D. C., and Heydari, A. R. (2011) Folate deficiency regulates expression of DNA polymerase beta in response to oxidative stress. Free radical biology & medicine 50, 270-280
    28. Cravo, M. L., Albuquerque, C. M., Salazar de Sousa, L., Gloria, L. M., Chaves, P., Dias Pereira, A., Nobre Leitao, C., Quina, M. G., and Costa Mira, F. (1998) Microsatellite instability in non-neoplastic mucosa of patients with ulcerative colitis: effect of folate supplementation. The American journal of gastroenterology 93, 2060-2064
    29. Piskac-Collier, A. L., Monroy, C., Lopez, M. S., Cortes, A., Etzel, C. J., Greisinger, A. J., Spitz, M. R., and El-Zein, R. A. (2011) Variants in folate pathway genes as modulators of genetic instability and lung cancer risk. Genes, chromosomes & cancer 50, 1-12
    30. Bistulfi, G., Vandette, E., Matsui, S., and Smiraglia, D. J. (2010) Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells. BMC biology 8, 6
    31. Schernhammer, E. S., Giovannuccci, E., Fuchs, C. S., and Ogino, S. (2008) A prospective study of dietary folate and vitamin B and colon cancer according to microsatellite instability and KRAS mutational status. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 17, 2895-2898
    32. Ross, M. E. (2010) Gene-environment interactions, folate metabolism and the embryonic nervous system. Wiley Interdiscip Rev Syst Biol Med 2, 471-480
    33. Nelson, M. M., Asling, C. W., and Evans, H. M. (1952) Production of multiple congenital abnormalities in young by maternal pteroylglutamic acid deficiency during gestation. J Nutr 48, 61-79
    34. Pulikkunnel, S. T., and Thomas, S. V. (2005) Neural tube defects: pathogenesis and folate metabolism. J Assoc Physicians India 53, 127-135
    35. Harris, M. J. (2009) Insights into prevention of human neural tube defects by folic acid arising from consideration of mouse mutants. Birth Defects Res A Clin Mol Teratol 85, 331-339
    36. Chen, Z., Karaplis, A. C., Ackerman, S. L., Pogribny, I. P., Melnyk, S., Lussier-Cacan, S., Chen, M. F., Pai, A., John, S. W., Smith, R. S., Bottiglieri, T., Bagley, P., Selhub, J., Rudnicki, M. A., James, S. J., and Rozen, R. (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Human molecular genetics 10, 433-443
    37. Watanabe, M., Osada, J., Aratani, Y., Kluckman, K., Reddick, R., Malinow, M. R., and Maeda, N. (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 92, 1585-1589
    38. MacFarlane, A. J., Liu, X., Perry, C. A., Flodby, P., Allen, R. H., Stabler, S. P., and Stover, P. J. (2008) Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. J Biol Chem 283, 25846-25853
    39. Chakraborty, C., Hsu, C. H., Wen, Z. H., Lin, C. S., and Agoramoorthy, G. (2009) Zebrafish: a complete animal model for in vivo drug discovery and development. Current drug metabolism 10, 116-124
    40. Kari, G., Rodeck, U., and Dicker, A. P. (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82, 70-80
    41. Pichler, F. B., Laurenson, S., Williams, L. C., Dodd, A., Copp, B. R., and Love, D. R. (2003) Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21, 879-883
    42. Peri, F., and Nusslein-Volhard, C. (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133, 916-927
    43. Sun, S. N., Gui, Y. H., Wang, Y. X., Qian, L. X., Jiang, Q., Liu, D., and Song, H. Y. (2007) Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development. Chinese medical journal 120, 1166-1171
    44. Sun, S., Gui, Y., Wang, Y., Qian, L., Liu, X., Jiang, Q., and Song, H. (2009) Effects of methotrexate on the developments of heart and vessel in zebrafish. Acta biochimica et biophysica Sinica 41, 86-96
    45. Sun, S., Gui, Y., Jiang, Q., and Song, H. (2011) Dihydrofolate reductase is required for the development of heart and outflow tract in zebrafish. Acta biochimica et biophysica Sinica 43, 957-969
    46. Lee, M. S., Bonner, J. R., Bernard, D. J., Sanchez, E. L., Sause, E. T., Prentice, R. R., Burgess, S. M., and Brody, L. C. (2012) Disruption of the folate pathway in zebrafish causes developmental defects. BMC developmental biology 12, 12
    47. Kao, T. T., Wang, K. C., Chang, W. N., Lin, C. Y., Chen, B. H., Wu, H. L., Shi, G. Y., Tsai, J. N., and Fu, T. F. (2008) Characterization and comparative studies of zebrafish and human recombinant dihydrofolate reductases--inhibition by folic acid and polyphenols. Drug Metab Dispos 36, 508-516
    48. Kao, T. T., Chang, W. N., Wu, H. L., Shi, G. Y., and Fu, T. F. (2009) Recombinant zebrafish {gamma}-glutamyl hydrolase exhibits properties and catalytic activities comparable with those of mammalian enzyme. Drug Metab Dispos 37, 302-309
    49. Chang, W. N., Tsai, J. N., Chen, B. H., and Fu, T. F. (2006) Cloning, expression, purification, and characterization of zebrafish cytosolic serine hydroxymethyltransferase. Protein expression and purification 46, 212-220
    50. Chang, W. N., Tsai, J. N., Chen, B. H., Huang, H. S., and Fu, T. F. (2007) Serine hydroxymethyltransferase isoforms are differentially inhibited by leucovorin: characterization and comparison of recombinant zebrafish serine hydroxymethyltransferases. Drug Metab Dispos 35, 2127-2137
    51. Chang, W. N., Lin, H. C., and Fu, T. F. (2010) Zebrafish 10-formyltetrahydrofolate dehydrogenase is similar to its mammalian isozymes for its structural and catalytic properties. Protein expression and purification 72, 217-222
    52. Kao, T. T., Lee, G. H., Fu, C. C., Chen, B. H., Chen, L. T., and Fu, T. F. (2013) Methotrexate-Induced Decrease in Embryonic 5-Methyl-Tetrahydrofolate Is Irreversible with Leucovorin Supplementation. Zebrafish
    53. Gelineau-van Waes, J., Heller, S., Bauer, L. K., Wilberding, J., Maddox, J. R., Aleman, F., Rosenquist, T. H., and Finnell, R. H. (2008) Embryonic development in the reduced folate carrier knockout mouse is modulated by maternal folate supplementation. Birth Defects Res A Clin Mol Teratol 82, 494-507
    54. Cains, S., Shepherd, A., Nabiuni, M., Owen-Lynch, P. J., and Miyan, J. (2009) Addressing a folate imbalance in fetal cerebrospinal fluid can decrease the incidence of congenital hydrocephalus. J Neuropathol Exp Neurol 68, 404-416
    55. Miller, G. W., Labut, E. M., Lebold, K. M., Floeter, A., Tanguay, R. L., and Traber, M. G. (2012) Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality. J Nutr Biochem 23, 478-486
    56. Horne, D. W., and Patterson, D. (1988) Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin Chem 34, 2357-2359
    57. Rembold, M., Lahiri, K., Foulkes, N. S., and Wittbrodt, J. (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nature protocols 1, 1133-1139
    58. Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annual review of biochemistry 58, 913-949
    59. Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000) Cadherins in embryonic and neural morphogenesis. Nature reviews. Molecular cell biology 1, 91-100
    60. Bills, N. D., Koury, M. J., Clifford, A. J., and Dessypris, E. N. (1992) Ineffective hematopoiesis in folate-deficient mice. Blood 79, 2273-2280
    61. Endres, M., Ahmadi, M., Kruman, I., Biniszkiewicz, D., Meisel, A., and Gertz, K. (2005) Folate deficiency increases postischemic brain injury. Stroke; a journal of cerebral circulation 36, 321-325
    62. Piedrahita, J. A., Oetama, B., Bennett, G. D., van Waes, J., Kamen, B. A., Richardson, J., Lacey, S. W., Anderson, R. G., and Finnell, R. H. (1999) Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nature genetics 23, 228-232
    63. Swanson, D. A., Liu, M. L., Baker, P. J., Garrett, L., Stitzel, M., Wu, J., Harris, M., Banerjee, R., Shane, B., and Brody, L. C. (2001) Targeted disruption of the methionine synthase gene in mice. Molecular and cellular biology 21, 1058-1065
    64. Champion, K. M., Cook, R. J., Tollaksen, S. L., and Giometti, C. S. (1994) Identification of a heritable deficiency of the folate-dependent enzyme 10-formyltetrahydrofolate dehydrogenase in mice. Proc Natl Acad Sci U S A 91, 11338-11342
    65. Salojin, K. V., Cabrera, R. M., Sun, W., Chang, W. C., Lin, C., Duncan, L., Platt, K. A., Read, R., Vogel, P., Liu, Q., Finnell, R. H., and Oravecz, T. (2011) A mouse model of hereditary folate malabsorption: deletion of the PCFT gene leads to systemic folate deficiency. Blood 117, 4895-4904
    66. Yeh, F. L., and Hsu, T. (2002) Differential regulation of spontaneous and heat-induced HSP 70 expression in developing zebrafish (Danio rerio). The Journal of experimental zoology 293, 349-359
    67. Rupik, W., Jasik, K., Bembenek, J., and Widlak, W. (2011) The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 159, 349-366
    68. Blechinger, S. R., Evans, T. G., Tang, P. T., Kuwada, J. Y., Warren, J. T., Jr., and Krone, P. H. (2002) The heat-inducible zebrafish hsp70 gene is expressed during normal lens development under non-stress conditions. Mechanisms of development 112, 213-215
    69. Shoji, W., and Sato-Maeda, M. (2008) Application of heat shock promoter in transgenic zebrafish. Development, growth & differentiation 50, 401-406
    70. Mason, J. B., Cole, B. F., Baron, J. A., Kim, Y. I., and Smith, A. D. (2008) Folic acid fortification and cancer risk. Lancet 371, 1335; author reply 1335-1336
    71. Smith, A. D., Kim, Y. I., and Refsum, H. (2008) Is folic acid good for everyone? Am J Clin Nutr 87, 517-533
    72. Piyathilake, C. J., Macaluso, M., Celedonio, J. E., Badiga, S., Bell, W. C., and Grizzle, W. E. (2010) Mandatory fortification with folic acid in the United States appears to have adverse effects on histone methylation in women with pre-cancer but not in women free of pre-cancer. International journal of women's health 1, 131-137
    73. Ulrich, C. M., and Potter, J. D. (2006) Folate supplementation: too much of a good thing? Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 15, 189-193
    74. Leung, K. Y., De Castro, S. C., Cabreiro, F., Gustavsson, P., Copp, A. J., and Greene, N. D. (2013) Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Molecular and cellular biochemistry 378, 229-236
    75. Belz, S., and Nau, H. (1998) Determination of folate patterns in mouse plasma, erythrocytes, and embryos by HPLC coupled with a microbiological assay. Analytical biochemistry 265, 157-166
    76. Kao, T. T., Lee, G. H., Fu, C. C., Chen, B. H., Chen, L. T., and Fu, T. F. (2013) Methotrexate-induced decrease in embryonic 5-methyltetrahydrofolate is irreversible with leucovorin supplementation. Zebrafish (in press)
    77. Stuhlmiller, T. J., and Garcia-Castro, M. I. (2012) Current perspectives of the signaling pathways directing neural crest induction. Cellular and molecular life sciences : CMLS 69, 3715-3737
    78. Gilbert, S. F. (2000) The Neural Crest. in Developmental biology, 6th Ed., Sinauer Associates, Sunderland (MA). pp
    79. Ille, F., and Sommer, L. (2005) Wnt signaling: multiple functions in neural development. Cellular and molecular life sciences : CMLS 62, 1100-1108
    80. Hari, L., Miescher, I., Shakhova, O., Suter, U., Chin, L., Taketo, M., Richardson, W. D., Kessaris, N., and Sommer, L. (2012) Temporal control of neural crest lineage generation by Wnt/beta-catenin signaling. Development 139, 2107-2117
    81. Dorsky, R. I., Moon, R. T., and Raible, D. W. (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370-373
    82. Wortzel, I., and Seger, R. (2011) The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes & cancer 2, 195-209
    83. Corson, L. B., Yamanaka, Y., Lai, K. M., and Rossant, J. (2003) Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 130, 4527-4537
    84. Perry, G., Roder, H., Nunomura, A., Takeda, A., Friedlich, A. L., Zhu, X., Raina, A. K., Holbrook, N., Siedlak, S. L., Harris, P. L., and Smith, M. A. (1999) Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. Neuroreport 10, 2411-2415
    85. Kulich, S. M., and Chu, C. T. (2001) Sustained extracellular signal-regulated kinase activation by 6-hydroxydopamine: implications for Parkinson's disease. Journal of neurochemistry 77, 1058-1066
    86. Ling, S., Chang, X., Schultz, L., Lee, T. K., Chaux, A., Marchionni, L., Netto, G. J., Sidransky, D., and Berman, D. M. (2011) An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer research 71, 3812-3821
    87. Lok, G. T., Chan, D. W., Liu, V. W., Hui, W. W., Leung, T. H., Yao, K. M., and Ngan, H. Y. (2011) Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS One 6, e23790
    88. Tidyman, W. E., and Rauen, K. A. (2009) The RASopathies: developmental syndromes of Ras/MAPK pathway dysregulation. Current opinion in genetics & development 19, 230-236
    89. Zhang, X. M., Huang, G. W., Tian, Z. H., Ren, D. L., and Wilson, J. X. (2009) Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutritional neuroscience 12, 226-232
    90. Lin, S. Y., Lee, W. R., Su, Y. F., Hsu, S. P., Lin, H. C., Ho, P. Y., Hou, T. C., Chou, Y. P., Kuo, C. T., and Lee, W. S. (2012) Folic acid inhibits endothelial cell proliferation through activating the cSrc/ERK 2/NF-kappaB/p53 pathway mediated by folic acid receptor. Angiogenesis 15, 671-683
    91. Chou, Y., Lin, H. C., Chen, K. C., Chang, C. C., Lee, W. S., and Juan, S. H. (2013) Molecular Mechanisms Underlying the Antiproliferative and Antimigratory Effects of Folate on Homocysteine-Challenged Rat Aortic Smooth Muscle Cells. British journal of pharmacology
    92. Attias, Z., Werner, H., and Vaisman, N. (2006) Folic acid and its metabolites modulate IGF-I receptor gene expression in colon cancer cells in a p53-dependent manner. Endocrine-related cancer 13, 571-581
    93. Cruz, C. D., and Cruz, F. (2007) The ERK 1 and 2 pathway in the nervous system: from basic aspects to possible clinical applications in pain and visceral dysfunction. Current neuropharmacology 5, 244-252
    94. Dineley, K. T., Westerman, M., Bui, D., Bell, K., Ashe, K. H., and Sweatt, J. D. (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci 21, 4125-4133
    95. Young, K. F., Pasternak, S. H., and Rylett, R. J. (2009) Oligomeric aggregates of amyloid beta peptide 1-42 activate ERK/MAPK in SH-SY5Y cells via the alpha7 nicotinic receptor. Neurochemistry international 55, 796-801
    96. Russo, C., Dolcini, V., Salis, S., Venezia, V., Zambrano, N., Russo, T., and Schettini, G. (2002) Signal transduction through tyrosine-phosphorylated C-terminal fragments of amyloid precursor protein via an enhanced interaction with Shc/Grb2 adaptor proteins in reactive astrocytes of Alzheimer's disease brain. J Biol Chem 277, 35282-35288
    97. Chung, E., and Kondo, M. (2011) Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunologic research 49, 248-268
    98. Chan, A., and Shea, T. B. (2006) Dietary and genetically-induced oxidative stress alter tau phosphorylation: influence of folate and apolipoprotein E deficiency. Journal of Alzheimer's disease : JAD 9, 399-405
    99. Chang, C. M., Yu, C. C., Lu, H. T., Chou, Y. F., and Huang, R. F. (2007) Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver. The British journal of nutrition 97, 855-863
    100. Lan, W., Guhaniyogi, J., Horn, M. J., Xia, J. Q., and Graham, B. (2007) A density-based proteomics sample fractionation technology: folate deficiency induced oxidative stress response in liver and brain. Journal of biomolecular techniques : JBT 18, 213-225
    101. Pravenec, M., Kozich, V., Krijt, J., Sokolova, J., Zidek, V., Landa, V., Simakova, M., Mlejnek, P., Silhavy, J., Oliyarnyk, O., Kazdova, L., and Kurtz, T. W. (2013) Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. American journal of hypertension 26, 135-140
    102. Tung, E. W., and Winn, L. M. (2011) Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: a role for oxidative stress in valproic acid-induced neural tube defects. Mol Pharmacol 80, 979-987
    103. Han, Z. J., Song, G., Cui, Y., Xia, H. F., and Ma, X. (2011) Oxidative stress is implicated in arsenic-induced neural tube defects in chick embryos. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience 29, 673-680
    104. Namekawa, T., Ikeda, S., Sugimoto, M., and Kume, S. (2010) Effects of astaxanthin-containing oil on development and stress-related gene expression of bovine embryos exposed to heat stress. Reproduction in domestic animals = Zuchthygiene 45, e387-391
    105. Koyama, H., Ikeda, S., Sugimoto, M., and Kume, S. (2012) Effects of folic acid on the development and oxidative stress of mouse embryos exposed to heat stress. Reproduction in domestic animals = Zuchthygiene 47, 921-927
    106. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi, Y., and Yazaki, Y. (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. The Journal of clinical investigation 100, 1813-1821
    107. Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G., and Pae, H. O. (2011) Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? Journal of signal transduction 2011, 792639
    108. Haslam, N., and Probert, C. S. (1998) An audit of the investigation and treatment of folic acid deficiency. Journal of the Royal Society of Medicine 91, 72-73
    109. Clarke, R., Refsum, H., Birks, J., Evans, J. G., Johnston, C., Sherliker, P., Ueland, P. M., Schneede, J., McPartlin, J., Nexo, E., and Scott, J. M. (2003) Screening for vitamin B-12 and folate deficiency in older persons. Am J Clin Nutr 77, 1241-1247
    110. Lucock, M., Ng, X., Boyd, L., Skinner, V., Wai, R., Tang, S., Naylor, C., Yates, Z., Choi, J. H., Roach, P., and Veysey, M. (2011) TAS2R38 bitter taste genetics, dietary vitamin C, and both natural and synthetic dietary folic acid predict folate status, a key micronutrient in the pathoaetiology of adenomatous polyps. Food & function 2, 457-465
    111. Twigt, J. M., Hammiche, F., Sinclair, K. D., Beckers, N. G., Visser, J. A., Lindemans, J., de Jong, F. H., Laven, J. S., and Steegers-Theunissen, R. P. (2011) Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation. The Journal of clinical endocrinology and metabolism 96, E322-329
    112. Grondahl, M. L., Borup, R., Vikesa, J., Ernst, E., Yding Andersen, C., and Lykke-Hartmann, K. (2013) The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase ii. Molecular human reproduction
    113. Bailey, L. B., and Berry, R. J. (2005) Folic acid supplementation and the occurrence of congenital heart defects, orofacial clefts, multiple births, and miscarriage. Am J Clin Nutr 81, 1213S-1217S
    114. Laanpere, M., Altmae, S., Stavreus-Evers, A., Nilsson, T. K., Yngve, A., and Salumets, A. (2010) Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutrition reviews 68, 99-113
    115. Kinoshita, M., Kayama, H., Kusu, T., Yamaguchi, T., Kunisawa, J., Kiyono, H., Sakaguchi, S., and Takeda, K. (2012) Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. Journal of immunology 189, 2869-2878

    下載圖示 校內:2018-08-21公開
    校外:2023-07-01公開
    QR CODE