簡易檢索 / 詳目顯示

研究生: 彭繼賢
Peng, Jih-Sien
論文名稱: 先進多全向輪無人搬運車之設計與控制系統實現
Design and Control Implementation of Advanced Omnidirectional Automated Guided Vehicle System
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 無人搬運車麥可納姆輪即時定位與地圖構建法快速隨機探索樹適應性控制被動性控制同步控制
外文關鍵詞: Automated guided vehicles, path planning, adaptive control, synchronized control, cooperative transportation
相關次數: 點閱:137下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於現今迫切於有效率的工廠運作系統,無人搬運車變成現今最熱門的移動機器人,多無人搬運車相較於單無人搬運車可搬運更重且更大的物體,進而提升整體的彈性與效率。因此本研究針對協同搬運任務,提出一套完整的無人搬運車系統,此系統包含全向輪無人搬運車、室內地圖建立方法、軌跡規劃、與軌跡追蹤達成協同搬運任務。使用麥可納姆輪於全向輪無人搬運車,可擺脫傳統輪型的物理限制具有全向移動的特性。當協同搬運時,搬運隊伍的姿態需要不斷改變來適應環境,本研究設計一可旋轉承載平台,其旋轉的自由度使得無人搬運車可快速地達成隊伍變換的需求。可旋轉承載平台具有緩衝系統,用於補償承載物體的位移偏差。本研究的無人搬運車具備室內定位、地圖構建的能力,使用即時定位與地圖構建法將地圖建立後,基於此地圖,考慮協同搬運陣形的位置與姿態,使用快速探索隨機樹規劃目標軌跡。在軌跡追蹤的控制器設計上,考慮無人搬運車的系統參數不確定性、輪子摩擦力不確定、
    與外擾下,本論文使用適應性控制器估測以上參數。另外,在無人搬運車之間有通訊的架構下,導入同步控制,維持無人搬運車之間的相對位置,進而提升協同搬運的表現,並基於被動性原理證明其穩定性。最後,以實際全向輪無人搬運車在建立的實驗架構下,驗證本研究提出的系統效能。

    Utilizing multiple small-sized automated guided vehicles (AGVs) in cooperative transportation of large and heavy objects in manufacturing factories or logistics is an emerging research tendency. Flexibility an e_ciency can be enhanced by using multi-AGV comparing to a large AGV with higher capacity, especially in clutter environments. In this paper, the cooperative transportation system consists of Mecanum-Wheeled AGVs (MWAGVs), trajectories tracking control, map constructing, and path planning on formation are studied. The problem of cooperative transportation is carrying cargo with _xed geometry and uncertainties on MWAGVs or formation. Therefore, MWAGVs are proposed with Mecanum wheels and rotary platform that provides omnidirectional movement but also compensation of displacements of cargo. Meanwhile, adaptive control is introduced to estimate the uncertain terms, whereas synchronization control is addressed to maintain formation, i.e., distance between MWAGVs. Additionally, the controller is proved to be stable by the passivity-based theorem. The optimal solution of rapidly-exploring random trees (RRT*) is used to plan a feasible path for cargo while MWAGVs' paths are generated with respect to cargo center point given the geometry of formation, an given initial position, and goal position. Finally, the proposed controller track desired trajectories to accomplish cooperative transportation tasks. Experiments are validated to verify the performances of the proposed system.

    第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 無人搬運車. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 定位及導航系統. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 路徑規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 多機器人系統. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 研究目標與貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 第二章基礎理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1 Lyapunov穩定性. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 非自主系統穩定特性. . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Lyapunov 函數與基本定理. . . . . . . . . . . . . . . . . . . 16 2.1.3 Barbalat's Lemma . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 圖形理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 被動性原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 移動機器人系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 機器人動力方程特性. . . . . . . . . . . . . . . . . . . . . . 25 2.5 全向移動機器人設計準則. . . . . . . . . . . . . . . . . . . . . . . 26 第三章無人搬運車之設計. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 組態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 機器人運動分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 全向輪無人搬運車設計. . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.1 移動平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.2 承載旋轉平台. . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 全向輪移動機器人動力模型. . . . . . . . . . . . . . . . . . . . . . 43 3.5 協同搬運系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 第四章軌跡規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1 即時定位與地圖構建法(SLAM) . . . . . . . . . . . . . . . . . . . . 47 4.2 快速探索隨機樹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 單台實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 協同搬運模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . 56 第五章基於被動性適應性同步控制. . . . . . . . . . . . . . . . . . . . . . 59 5.1 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 穩定性證明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 第六章實驗架構與結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.1.1 全向輪無人搬運車. . . . . . . . . . . . . . . . . . . . . . . 77 6.1.2 機器人作業系統. . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.3 外部定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 實驗流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3 單台MWAGV追蹤實驗結果. . . . . . . . . . . . . . . . . . . . . . 82 6.4 多台MWAGV追蹤實驗結果. . . . . . . . . . . . . . . . . . . . . . 89 6.4.1 物體的複雜目標軌跡追蹤. . . . . . . . . . . . . . . . . . . 89 6.4.2 室內空間之軌跡追蹤. . . . . . . . . . . . . . . . . . . . . . 99 6.5 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 第七章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.1.1 全向輪無人搬運車設計. . . . . . . . . . . . . . . . . . . . . 110 7.1.2 室內地圖構建與軌跡規劃. . . . . . . . . . . . . . . . . . . 110 7.1.3 協同搬運系統. . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    [1] Norsharimie Adam, Mohd Aiman, Wan Mohd Na_s, Addie Irawan, Mohamad
    Muaz, Mohamad Hafz, Akhtar Razul Razali, and Sheikh Norhasmadi Sheikh
    Ali. Omnidirectional configuration and control approach on mini heavy loaded
    forklift autonomous guided vehicle. MATEC Web of Conferences, 90:01077,
    2017.
    [2] Rainer Bischo, Ulrich Huggenberger, and Erwin Prassler. Kuka youbot-a
    mobile manipulator for research and education. IEEE International Confer-
    ence on Robotics and Automation, pages 1-4, 2011.
    [3] Lothar Schulze, Sebastian Behling, and Stefan Buhrs. Development of a micro
    drive-under tractor-research and application. World Congress on Engineering,
    2189:823-827, 2010.
    [4] Tamio Arai, Enrico Pagello, and Lynne E. Parker. Editorial: Advances
    in multi-robot systems. IEEE Transactions on Robotics and Automation,
    18(5):655-661, 2002.
    [5] Yen-Chen Liu, Nikhil Chopra, JA Guerrero, and R Lozano. On adaptive and
    robust controlled synchronization of networked robotic systems on strongly
    connected graphs. Flight Formation Control, pages 75-98, 2013.
    [6] Gong-Bo Dai and Yen-Chen Liu. Distributed coordination and cooperation
    control for networked mobile manipulators. IEEE Transactions on Industrial
    Electronics, 64(6):5065-5074, 2016.
    [7] Yen-Chen Liu. Synchronization of robotic manipulators with kinematic and
    dynamic uncertainties over delayed communication network. IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 3440-
    3445, 2014.
    [8] Yen-Chen Liu. Distributed synchronization for heterogeneous robots with
    uncertain kinematics and dynamics under switching topologies. Journal of
    the Franklin Institute, 352(9):3808-3826, 2015.
    [9] Tomas Lozano-Perez. Spatial planning: A configuration space approach.
    Springer, 1990.
    [10] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
    planning. 1998.
    [11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
    motion planning. The International Journal of Robotics Research, 30(7):846-
    894, 2011.
    [12] Taher Hekmatfar, Ellips Masehian, and Seyed Javad Mousavi. Cooperative
    object transportation by multiple mobile manipulators through a hierarchical
    planning architecture. Second RSI/ISM International Conference on Robotics
    and Mechatronics (ICRoM), pages 503-508, 2014.
    [13] Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot
    Modeling and Control. John Wiley & Sons, 2006.
    [14] Inc. Professional Materials Handling Co. AGV work in factory. http://www.
    steinbockus.com/AGVs/fs.html/, Aug 2018.
    [15] KUKA Robots and Automation. Clever autonomy for mobile robots - kuka
    navigation solution. https://www.youtube.com/watch?v=kN9a7W_hnSQ/,
    May 2016.
    [16] Lonnie E Haefner and Matthew S Bieschke. ITS opportunities in port opera-
    tions. Joint Program Office for Intelligent Transportation Systems, 1998.
    [17] M. C. van der Heijden, Aart van Harten, M. J. R. Ebben, Y. A. Saanen, E. C.
    Valentin, and A. Verbraeck. Using simulation to design an automated underground
    system for transporting freight around schiphol airport. Interfaces,
    32(4):1-19, 2002.
    [18] Iris F.A. Vis. Survey of research in the design and control of automated guided
    vehicle systems. European Journal of Operational Research, 170(3):677-709,
    2006.
    [19] Marques Brownlee. Tesla factory tour with Elon Musk! https://www.
    youtube.com/watch?v=mr9kK0_7x08/, Aug 2018.
    [20] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
    part i. IEEE Robotics and Automation Magazine, 13(2):99-110, 2006.
    [21] Jean-Claude Latombe. Motion planning: A journey of robots, molecules,
    digital actors, and other artifacts. The International Journal of Robotics
    Research, 18(11):1119-1128, 1999.
    [22] Steven M. LaValle, James J. Ku
    ner, B. R. Donald, et al. Rapidly-exploring
    random trees: Progress and prospects. Algorithmic and Computational
    Robotics: New Directions, (5):293-308, 2001.
    [23] Maja J. Mataric, Martin Nilsson, and Kristian T. Simsarin. Cooperative
    multi-robot box-pushing. IEEE/RSJ International Conference on Intelligent
    Robots and Systems. Human Robot Interaction and Cooperative Robots, 3:556-
    561, 1995.
    [24] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
    the heuristic determination of minimum cost paths. IEEE Transactions on
    Systems Science and Cybernetics, 4(2):100-107, 1968.
    [25] Wesam H. Al-Sabban, Luis F. Gonzalez, and Ryan N. Smith. Wind-energy
    based path planning for unmanned aerial vehicles using markov decision processes.
    IEEE International Conference on Robotics and Automation, pages
    784-789, 2013.
    [26] Amit Konar, Indrani Goswami Chakraborty, Sapam Jitu Singh, Lakhmi C.
    Jain, and Atulya K. Nagar. A deterministic improved q-learning for path
    planning of a mobile robot. IEEE Transactions on Systems, Man, and Cy-
    bernetics: Systems, 43(5):1141-1153, 2013.
    [27] Augie Widyotriatmo and Keum-Shik Hong. Navigation function-based control
    of multiple wheeled vehicles. IEEE Transactions on Industrial Electronics,
    58(5):1896-1906, 2011.
    [28] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt
    Konolige. The office marathon: Robust navigation in an indoor office environment.
    IEEE International Ionference on Robotics and Automation, pages
    300-307, 2010.
    [29] Christoph Sprunk, Boris Lau, Patrick Pfaff, and Wolfram Burgard. An accurate
    and efficient navigation system for omnidirectional robots in industrial
    environments. Autonomous Robots, 41(2):473-493, 2017.
    [30] Kyung-Lyong Han, Oh Kyu Choi, In Lee, Inwook Hwang, Jin S. Lee, and
    Seungmoon Choi. Design and control of omni-directional mobile robot for mobile haptic interface. IEEE International Conference on Control, Automa-
    tion and Systems, pages 1290-1295, 2008.
    [31] Olaf Diegel, Aparna Badve, Glen Bright, Johan Potgieter, and Sylvester Tlale.
    Improved mecanum wheel design for omni-directional robots. Australasian
    Conference on Robotics and Automation, pages 117-121, 2002.
    [32] Robert L. Williams, Brian E. Carter, Paolo Gallina, and Giulio Rosati. Dynamic
    model with slip for wheeled omnidirectional robots. IEEE Transactions
    on Robotics and Automation, 18(3):285-293, 2002.
    [33] B. I. Adamov. Influence of mecanum wheels construction on accuracy of the
    omnidirectional platform navigation (on exanple of kuka youbot robot). IEEE
    Saint Petersburg International Conference on Integrated Navigation Systems,
    pages 1-4, 2018.
    [34] William A. Blyth, David R. W. Barr, and Ferdinando Rodriguez Y. Baena.
    A reduced actuation mecanum wheel platform for pipe inspection. IEEE
    International Conference on Advanced Intelligent Mechatronics, pages 419-
    424, 2016.
    [35] Jungmin Kim, Seungbeom Woo, Jaeyong Kim, Joocheol Do, Sungshin Kim,
    and Sunil Bae. Inertial navigation system for an automatic guided vehicle
    with mecanum wheels. International Journal of Precision Engineering and
    Manufacturing, 13(3):379-386, 2012.
    [36] Veer Alakshendra and Shital S. Chiddarwar. Adaptive robust control of
    mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics,
    87(4):2147-2169, 2017.
    [37] Kyung-Lyong Han, Hyosin Kim, and Jin S. Lee. The sources of position errors
    of omni-directional mobile robot with mecanum wheel. IEEE International
    Conference on Systems, Man and Cybernetics, pages 581-586, 2010.
    [38] Ching-Chih Tsai, Hsiao-Lang Wu, and Ying-Ru Lee. Intelligent adaptive
    motion controller design for mecanum wheeled omnidirectional robots with
    parameter variations. International Journal of Nonlinear Sciences and Nu-
    merical Simulation, 11:91-96, 2010.
    [39] Lih-Chang Lin and Hao-Yin Shih. Modeling and adaptive control of an omnimecanum-wheeled robot. Intelligent Control and Automation, 4(02):166,
    2013.
    [40] Zenon Hendzel. Robust neural networks control of omni-mecanum wheeled
    robot with hamilton-jacobi inequality. Journal of Theoretical and Applied
    Mechanics, 56, 2018.
    [41] Masayoshi Wada and Ryotaro Torii. Cooperative transportation of a single
    object by omnidirectional robots using potential method. IEEE International
    Conference on Advanced Robotics, pages 1-6, 2013.
    [42] Zijian Wang, Guang Yang, Xuanshuo Su, and Mac Schwager. Ouijabots:
    Omnidirectional robots for cooperative object transport with rotation control
    using no communication. Distributed Autonomous Robotic Systems, pages
    117-131, 2018.
    [43] Shadi Tasdighi Kalat, Siamak G. Faal, and Cagdas D. Onal. A decentralized,
    communication-free force distribution method with application to collective
    object manipulation. Journal of Dynamic Systems, Measurement, and Con-
    trol, 140(9):091012, 2018.
    [44] Golnaz Habibi, Zachary Kingston, William Xie, Mathew Jellins, and James
    McLurkin. Distributed centroid estimation and motion controllers for collective
    transport by multi-robot systems. IEEE International Conference on
    Robotics and Automation, pages 1282-1288, 2015.
    [45] Gong-Bo Dai and Yen-Chen Liu. Distributed coordination and cooperation
    control for networked mobile manipulators. IEEE Transactions on Industrial
    Electronics, 64(6):5065-5074, 2017.
    [46] Toni Machado, Tiago Malheiro, S ergio Monteiro, Wolfram Erlhagen, and
    Estela Bicho. Attractor dynamics approach to joint transportation by autonomous
    robots: theory, implementation and validation on the factory floor.
    Autonomous Robots, 43(3):589-610, 2019.
    [47] Alpaslan Yufka and Metin Ozkan. Formation-based control scheme for cooperative transportation by multiple mobile robots. International Journal of
    Advanced Robotic Systems, 12(9):120, 2015.
    [48] Hassan K. Khalil and Jessy W. Grizzle. Nonlinear Systems. Prentice hall
    New Jersey, 1996.
    [49] French Mark, Szepesvari Csaba, and Rogers Eric. Performance of Nonlinear
    Approximate Adaptive Controllers. Wiley, 2003.
    [50] D. B. West. Introduction to Graph Theory. Englewood Cliffs, NJ:Prentice-
    Hall, 1996.
    [51] C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer, 2001.
    [52] H. K. Khalil. Nonlinear Systems. Englewood Cli
    s, NJ: Prentice-Hall, 2002.
    [53] Patrick F. Muir and Charles P. Neuman. Kinematic modeling of wheeled
    mobile robots. Journal of Robotic Systems, 4(2):281-340, 1987.
    [54] Nikhil Chopra and Mark W. Spong. Passivity-Based Control of Multi-Agent
    Systems, pages 107-134. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE