| 研究生: |
彭繼賢 Peng, Jih-Sien |
|---|---|
| 論文名稱: |
先進多全向輪無人搬運車之設計與控制系統實現 Design and Control Implementation of Advanced Omnidirectional Automated Guided Vehicle System |
| 指導教授: |
劉彥辰
Liu, Yen-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 無人搬運車 、麥可納姆輪 、即時定位與地圖構建法 、快速隨機探索樹 、適應性控制 、被動性控制 、同步控制 |
| 外文關鍵詞: | Automated guided vehicles, path planning, adaptive control, synchronized control, cooperative transportation |
| 相關次數: | 點閱:137 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於現今迫切於有效率的工廠運作系統,無人搬運車變成現今最熱門的移動機器人,多無人搬運車相較於單無人搬運車可搬運更重且更大的物體,進而提升整體的彈性與效率。因此本研究針對協同搬運任務,提出一套完整的無人搬運車系統,此系統包含全向輪無人搬運車、室內地圖建立方法、軌跡規劃、與軌跡追蹤達成協同搬運任務。使用麥可納姆輪於全向輪無人搬運車,可擺脫傳統輪型的物理限制具有全向移動的特性。當協同搬運時,搬運隊伍的姿態需要不斷改變來適應環境,本研究設計一可旋轉承載平台,其旋轉的自由度使得無人搬運車可快速地達成隊伍變換的需求。可旋轉承載平台具有緩衝系統,用於補償承載物體的位移偏差。本研究的無人搬運車具備室內定位、地圖構建的能力,使用即時定位與地圖構建法將地圖建立後,基於此地圖,考慮協同搬運陣形的位置與姿態,使用快速探索隨機樹規劃目標軌跡。在軌跡追蹤的控制器設計上,考慮無人搬運車的系統參數不確定性、輪子摩擦力不確定、
與外擾下,本論文使用適應性控制器估測以上參數。另外,在無人搬運車之間有通訊的架構下,導入同步控制,維持無人搬運車之間的相對位置,進而提升協同搬運的表現,並基於被動性原理證明其穩定性。最後,以實際全向輪無人搬運車在建立的實驗架構下,驗證本研究提出的系統效能。
Utilizing multiple small-sized automated guided vehicles (AGVs) in cooperative transportation of large and heavy objects in manufacturing factories or logistics is an emerging research tendency. Flexibility an e_ciency can be enhanced by using multi-AGV comparing to a large AGV with higher capacity, especially in clutter environments. In this paper, the cooperative transportation system consists of Mecanum-Wheeled AGVs (MWAGVs), trajectories tracking control, map constructing, and path planning on formation are studied. The problem of cooperative transportation is carrying cargo with _xed geometry and uncertainties on MWAGVs or formation. Therefore, MWAGVs are proposed with Mecanum wheels and rotary platform that provides omnidirectional movement but also compensation of displacements of cargo. Meanwhile, adaptive control is introduced to estimate the uncertain terms, whereas synchronization control is addressed to maintain formation, i.e., distance between MWAGVs. Additionally, the controller is proved to be stable by the passivity-based theorem. The optimal solution of rapidly-exploring random trees (RRT*) is used to plan a feasible path for cargo while MWAGVs' paths are generated with respect to cargo center point given the geometry of formation, an given initial position, and goal position. Finally, the proposed controller track desired trajectories to accomplish cooperative transportation tasks. Experiments are validated to verify the performances of the proposed system.
[1] Norsharimie Adam, Mohd Aiman, Wan Mohd Na_s, Addie Irawan, Mohamad
Muaz, Mohamad Hafz, Akhtar Razul Razali, and Sheikh Norhasmadi Sheikh
Ali. Omnidirectional configuration and control approach on mini heavy loaded
forklift autonomous guided vehicle. MATEC Web of Conferences, 90:01077,
2017.
[2] Rainer Bischo, Ulrich Huggenberger, and Erwin Prassler. Kuka youbot-a
mobile manipulator for research and education. IEEE International Confer-
ence on Robotics and Automation, pages 1-4, 2011.
[3] Lothar Schulze, Sebastian Behling, and Stefan Buhrs. Development of a micro
drive-under tractor-research and application. World Congress on Engineering,
2189:823-827, 2010.
[4] Tamio Arai, Enrico Pagello, and Lynne E. Parker. Editorial: Advances
in multi-robot systems. IEEE Transactions on Robotics and Automation,
18(5):655-661, 2002.
[5] Yen-Chen Liu, Nikhil Chopra, JA Guerrero, and R Lozano. On adaptive and
robust controlled synchronization of networked robotic systems on strongly
connected graphs. Flight Formation Control, pages 75-98, 2013.
[6] Gong-Bo Dai and Yen-Chen Liu. Distributed coordination and cooperation
control for networked mobile manipulators. IEEE Transactions on Industrial
Electronics, 64(6):5065-5074, 2016.
[7] Yen-Chen Liu. Synchronization of robotic manipulators with kinematic and
dynamic uncertainties over delayed communication network. IEEE International Conference on Systems, Man, and Cybernetics (SMC), pages 3440-
3445, 2014.
[8] Yen-Chen Liu. Distributed synchronization for heterogeneous robots with
uncertain kinematics and dynamics under switching topologies. Journal of
the Franklin Institute, 352(9):3808-3826, 2015.
[9] Tomas Lozano-Perez. Spatial planning: A configuration space approach.
Springer, 1990.
[10] Steven M LaValle. Rapidly-exploring random trees: A new tool for path
planning. 1998.
[11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846-
894, 2011.
[12] Taher Hekmatfar, Ellips Masehian, and Seyed Javad Mousavi. Cooperative
object transportation by multiple mobile manipulators through a hierarchical
planning architecture. Second RSI/ISM International Conference on Robotics
and Mechatronics (ICRoM), pages 503-508, 2014.
[13] Mark W. Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot
Modeling and Control. John Wiley & Sons, 2006.
[14] Inc. Professional Materials Handling Co. AGV work in factory. http://www.
steinbockus.com/AGVs/fs.html/, Aug 2018.
[15] KUKA Robots and Automation. Clever autonomy for mobile robots - kuka
navigation solution. https://www.youtube.com/watch?v=kN9a7W_hnSQ/,
May 2016.
[16] Lonnie E Haefner and Matthew S Bieschke. ITS opportunities in port opera-
tions. Joint Program Office for Intelligent Transportation Systems, 1998.
[17] M. C. van der Heijden, Aart van Harten, M. J. R. Ebben, Y. A. Saanen, E. C.
Valentin, and A. Verbraeck. Using simulation to design an automated underground
system for transporting freight around schiphol airport. Interfaces,
32(4):1-19, 2002.
[18] Iris F.A. Vis. Survey of research in the design and control of automated guided
vehicle systems. European Journal of Operational Research, 170(3):677-709,
2006.
[19] Marques Brownlee. Tesla factory tour with Elon Musk! https://www.
youtube.com/watch?v=mr9kK0_7x08/, Aug 2018.
[20] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics and Automation Magazine, 13(2):99-110, 2006.
[21] Jean-Claude Latombe. Motion planning: A journey of robots, molecules,
digital actors, and other artifacts. The International Journal of Robotics
Research, 18(11):1119-1128, 1999.
[22] Steven M. LaValle, James J. Ku
ner, B. R. Donald, et al. Rapidly-exploring
random trees: Progress and prospects. Algorithmic and Computational
Robotics: New Directions, (5):293-308, 2001.
[23] Maja J. Mataric, Martin Nilsson, and Kristian T. Simsarin. Cooperative
multi-robot box-pushing. IEEE/RSJ International Conference on Intelligent
Robots and Systems. Human Robot Interaction and Cooperative Robots, 3:556-
561, 1995.
[24] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions on
Systems Science and Cybernetics, 4(2):100-107, 1968.
[25] Wesam H. Al-Sabban, Luis F. Gonzalez, and Ryan N. Smith. Wind-energy
based path planning for unmanned aerial vehicles using markov decision processes.
IEEE International Conference on Robotics and Automation, pages
784-789, 2013.
[26] Amit Konar, Indrani Goswami Chakraborty, Sapam Jitu Singh, Lakhmi C.
Jain, and Atulya K. Nagar. A deterministic improved q-learning for path
planning of a mobile robot. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 43(5):1141-1153, 2013.
[27] Augie Widyotriatmo and Keum-Shik Hong. Navigation function-based control
of multiple wheeled vehicles. IEEE Transactions on Industrial Electronics,
58(5):1896-1906, 2011.
[28] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and Kurt
Konolige. The office marathon: Robust navigation in an indoor office environment.
IEEE International Ionference on Robotics and Automation, pages
300-307, 2010.
[29] Christoph Sprunk, Boris Lau, Patrick Pfaff, and Wolfram Burgard. An accurate
and efficient navigation system for omnidirectional robots in industrial
environments. Autonomous Robots, 41(2):473-493, 2017.
[30] Kyung-Lyong Han, Oh Kyu Choi, In Lee, Inwook Hwang, Jin S. Lee, and
Seungmoon Choi. Design and control of omni-directional mobile robot for mobile haptic interface. IEEE International Conference on Control, Automa-
tion and Systems, pages 1290-1295, 2008.
[31] Olaf Diegel, Aparna Badve, Glen Bright, Johan Potgieter, and Sylvester Tlale.
Improved mecanum wheel design for omni-directional robots. Australasian
Conference on Robotics and Automation, pages 117-121, 2002.
[32] Robert L. Williams, Brian E. Carter, Paolo Gallina, and Giulio Rosati. Dynamic
model with slip for wheeled omnidirectional robots. IEEE Transactions
on Robotics and Automation, 18(3):285-293, 2002.
[33] B. I. Adamov. Influence of mecanum wheels construction on accuracy of the
omnidirectional platform navigation (on exanple of kuka youbot robot). IEEE
Saint Petersburg International Conference on Integrated Navigation Systems,
pages 1-4, 2018.
[34] William A. Blyth, David R. W. Barr, and Ferdinando Rodriguez Y. Baena.
A reduced actuation mecanum wheel platform for pipe inspection. IEEE
International Conference on Advanced Intelligent Mechatronics, pages 419-
424, 2016.
[35] Jungmin Kim, Seungbeom Woo, Jaeyong Kim, Joocheol Do, Sungshin Kim,
and Sunil Bae. Inertial navigation system for an automatic guided vehicle
with mecanum wheels. International Journal of Precision Engineering and
Manufacturing, 13(3):379-386, 2012.
[36] Veer Alakshendra and Shital S. Chiddarwar. Adaptive robust control of
mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics,
87(4):2147-2169, 2017.
[37] Kyung-Lyong Han, Hyosin Kim, and Jin S. Lee. The sources of position errors
of omni-directional mobile robot with mecanum wheel. IEEE International
Conference on Systems, Man and Cybernetics, pages 581-586, 2010.
[38] Ching-Chih Tsai, Hsiao-Lang Wu, and Ying-Ru Lee. Intelligent adaptive
motion controller design for mecanum wheeled omnidirectional robots with
parameter variations. International Journal of Nonlinear Sciences and Nu-
merical Simulation, 11:91-96, 2010.
[39] Lih-Chang Lin and Hao-Yin Shih. Modeling and adaptive control of an omnimecanum-wheeled robot. Intelligent Control and Automation, 4(02):166,
2013.
[40] Zenon Hendzel. Robust neural networks control of omni-mecanum wheeled
robot with hamilton-jacobi inequality. Journal of Theoretical and Applied
Mechanics, 56, 2018.
[41] Masayoshi Wada and Ryotaro Torii. Cooperative transportation of a single
object by omnidirectional robots using potential method. IEEE International
Conference on Advanced Robotics, pages 1-6, 2013.
[42] Zijian Wang, Guang Yang, Xuanshuo Su, and Mac Schwager. Ouijabots:
Omnidirectional robots for cooperative object transport with rotation control
using no communication. Distributed Autonomous Robotic Systems, pages
117-131, 2018.
[43] Shadi Tasdighi Kalat, Siamak G. Faal, and Cagdas D. Onal. A decentralized,
communication-free force distribution method with application to collective
object manipulation. Journal of Dynamic Systems, Measurement, and Con-
trol, 140(9):091012, 2018.
[44] Golnaz Habibi, Zachary Kingston, William Xie, Mathew Jellins, and James
McLurkin. Distributed centroid estimation and motion controllers for collective
transport by multi-robot systems. IEEE International Conference on
Robotics and Automation, pages 1282-1288, 2015.
[45] Gong-Bo Dai and Yen-Chen Liu. Distributed coordination and cooperation
control for networked mobile manipulators. IEEE Transactions on Industrial
Electronics, 64(6):5065-5074, 2017.
[46] Toni Machado, Tiago Malheiro, S ergio Monteiro, Wolfram Erlhagen, and
Estela Bicho. Attractor dynamics approach to joint transportation by autonomous
robots: theory, implementation and validation on the factory floor.
Autonomous Robots, 43(3):589-610, 2019.
[47] Alpaslan Yufka and Metin Ozkan. Formation-based control scheme for cooperative transportation by multiple mobile robots. International Journal of
Advanced Robotic Systems, 12(9):120, 2015.
[48] Hassan K. Khalil and Jessy W. Grizzle. Nonlinear Systems. Prentice hall
New Jersey, 1996.
[49] French Mark, Szepesvari Csaba, and Rogers Eric. Performance of Nonlinear
Approximate Adaptive Controllers. Wiley, 2003.
[50] D. B. West. Introduction to Graph Theory. Englewood Cliffs, NJ:Prentice-
Hall, 1996.
[51] C. Godsil and G. F. Royle. Algebraic Graph Theory. Springer, 2001.
[52] H. K. Khalil. Nonlinear Systems. Englewood Cli
s, NJ: Prentice-Hall, 2002.
[53] Patrick F. Muir and Charles P. Neuman. Kinematic modeling of wheeled
mobile robots. Journal of Robotic Systems, 4(2):281-340, 1987.
[54] Nikhil Chopra and Mark W. Spong. Passivity-Based Control of Multi-Agent
Systems, pages 107-134. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.