| 研究生: |
簡嘉宏 Chien, Chia-Hung |
|---|---|
| 論文名稱: |
內藏式馬達高速主軸之熱傳分析 The Heat Transfer Analysis for Built-In Motor High Speed Spindles |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 高速主軸 |
| 外文關鍵詞: | high speed spindle |
| 相關次數: | 點閱:51 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用數值方法探討一三維內藏式馬達高速主軸之傳導現象。研究在提供不同的熱源(q=60 W、120W、240W)、冷卻液(水)流量大小(0.4 L/min 、0.8 L/min、 1.2L/min) 以及在不同的大氣自然對流熱傳係數(h=5 W/m2-oC、10 W/m2-oC、20 W/m2-oC)下,進行數值模擬。在熱源方面,發現當所供給之熱源為120 W時,只要在冷卻液流量為0.8 L/min時,已能有效的將主軸溫度提升抑止,此時即使再增加冷卻液的流量,主軸之主要高溫區已無明顯的降溫趨勢。另外從冷卻液的流量所造成之溫度變化,進而知道冷卻液為影響主軸整體溫度分佈主因,在無冷卻液冷卻下,主軸內最高溫度可提升至212 oC左右,而在不同的熱源供給下,利用不同的冷卻液流量將有不同之降溫效果。在不同的大氣自然對流熱傳下,對整體主軸溫度分佈影響不大,即使將自然對流熱傳係數提高四倍,但主軸之溫度差卻只在1 oC內。
The purpose of this paper is to numerically analyze the three-dimensional heat conduction in a built-in motorized high-speed spindle with helical water cooling. The effects of different heat sources (q = 60 w, 120 w and 240 w), cooling water flow rate (0.4 L/min, 0.8 L/min and 1.2 L/min) and free convection. heat transfer coefficient in atmosphere (h = 5 W/m2-oC, 10 W/m2-oC and 20 W/m2-oC) on the temperature distribution are examined in detail. The numerical results indicate that without cooling liquid, the highest temperature of the spindle could be increased up to about 212 oC. The cooling liquid removes most of the heat produced by the motor. Even though the free convection heat transfer coefficient is increased up to 4 times, the temperature difference of the spindle is just within 1 oC only.
1. 張錫晴, 蔡垂錫“主軸特性對高速切削之影響”, 機械工程,第236期,九十年二月
2. 蘇啟宗,“氣靜壓軸承式高速主軸技術研發與原型機製作”,工程科技通訊,第 45 期,八十九年三月
3. 張恩生“高速主軸之技術發展與應用”, 機械工程,第236期,九十年二月
4. B. Bossmanns and J. F. Tu,“ A thermal model for high speed motorized spindles ”,International Journal of Machine Tools and Manufacture,Vol. 39 ,pp.1345-1366,1999
5. D. S. Burnett, “ Finite Element Analysis from Concepts to Applications ”, Addison-Wesley Publishing Company, 1987
6. Y. Takeuti and Y. Tanigawa, “ A New Numerical Method for Transient Thermal Stress Problem ”, International Journal for Numerical Methods in Engineering, Vol. 14,pp.987-1000, Jul. 1978
7. 徐紹煜, “ 工具機主軸之熱傳有限元素分析 ”機械工業雜誌, 第一零四期,pp.167-178 , 八十年十一月
8. O. C. Zienkiewicz and Y. K. Cheung, “Finite Element in The Solution of Field Problems ”,The Engineer ,Vol. 220,pp.507-510, 1965.
9. J. G. Zhou and I. M. Goodwill , “ A Finite Volume for Steady State 2D shallow Water Flows” , Int.J.Num.Meth. in Eng, Vol 7,pp.4-23,1997
10. 張景亭、劉德騏 “ 高速主軸有限元素模型的建立與應用”, 國立中正大學機械工程研究所碩士論文,1996
11. 李添郡,“ 發展固流藕合之結構熱傳程式與其應用 ”, 國立中正大學機械工程研究所碩士論文,1997
12. 陳建興, “ 內藏式高速主軸冷卻系統的熱傳現像探討與最佳化設 計 ”, 國立中正大學機械工程研究所碩士論文,1996
13. P. J. Roache, “ Computational Fluid Dynamics ”, Hermosa, 1972
14. E. S. Smith “ Thermal Design of Heat Exchangers ”, Wiley, 1997
15. UNIC, UNIC General Pyrpose CFD Design Tool , Engineering Sciences , Inc. , Alabama , U.S.A. , 1995
16. CFDS-FLOW3D,Computational Fluid Dynamics Services-FLOW3D, AEA Technology, United Kingdom,2001
17. STAR-CD 3.10, Simulation of Turbulent Flow in Arbitrary Retions Computational Dynamics Limited, Adapco Analysis and Design Application, CO. , LTD,2001
18. PHOENICS, Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series, Concentration、Heat and Monentum Limited (CHAM), London, United Kingdom,2001
19. FIDAP 7.0 , Fluid Dynamics Analysis Package, Fluid Dynamic International (FDI),IL, U.S.A.,2001
20. CFDS-ASTEC, Computational Fluid Dynamics Services-ASTEC, AEA Technology, United Kingdom,2001
21. I. A.,Demirzic, A finite Volume Method for Computation of Fluid Flow in Complex Geometries, PHD thesis, University of London , 1982
22. J. F. Thompson, Numerical Grid Generation Foundations and Applications, North Holland , New York , 1985