簡易檢索 / 詳目顯示

研究生: 呂維祥
Wei-Hsiang,Lu,
論文名稱: 以磁控共濺鍍二氧化矽-氧化鋅奈米複合物為絕緣層之氧化鋅金氧半元件特性研究
Investigation of ZnO MOS Device with Magnetron Co-Sputtering SiO2-ZnO Nanocomposites Insulator Layer
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 80
中文關鍵詞: 氧化鋅奈米粒子快閃記憶體MOS電容
外文關鍵詞: ZnO, nanoparticles, flash memory, MOS capacitor
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來許多奈米點記憶體被廣泛地拿來研究以取代傳統浮閘極記憶體的可靠度問題,而在許多奈米點的材料中,以金屬奈米點去做為記憶體,更被認為有機會成為新一代記憶體元件。金屬奈米點有高狀態密度、可調變金屬功函數以及不容易受到載子侷限效應所引起的能階擾動,因此可以減少元件的操作電壓、增加寫入與抹除的速度,以及增加電子的保存時間。
    本篇論文使用之元素為氧化鋅(ZnO)奈米粒子,搭配著氧化鋅為半導體材料,因為氧化鋅除了價格低廉、擁有寬的能隙(3.4eV)、常溫下較大的激子束縛能(60meV),且可經由製備方式調變氧空缺與鋅間隙原子的密度去影響其導電能力,所以運用以上條件會先以磁控濺鍍去做成MOS結構的電容器去觀察各種條件之薄膜堆疊的介面特性;再使用磁控共濺鍍將絕緣層置入奈米點,觀察奈米點的電荷儲存效應。

    In the recent years many nanodots memories have been researched for the reliability of using it to replace floating gate memories. In many of the components of the nanodots, the metal parts of the nanodots has been used as the memory storage device and it is possible that it could become the new generation of main components for memory storage devices. The metal nanodots have a high density of states around Fermi level, adjustable work functions and is not easily affected by energy perturbation caused by carrier confinements. Hence could decrease the voltage necessary for the components; increase the speed of erasing and imputing data and increase the preservation time for electrons.
    The material is used in this thesis is zinc oxide nanoparticles, with zinc oxide as the semiconductor. As zinc oxide is an inexpensive material with a wide bandgap of 3.4eV; a large exciton binding energy of 60meV at room temperature and is also capable of changing the density of oxygen vacancies and the Zn interstial atoms which consequently affects its conductivity. Therefore to utilize the mentioned conditions we will first use magnetron sputtering to create the MOS structure of the capacitors to observe the properties of the interface of the different variables ; then the magnetron co-sputtering to put the nanodots into the insulator, to observe the nanodot's storage ability。

    摘要.......................................................i Abstract..................................................ii 致謝.....................................................iii 目錄......................................................iv 表目錄...................................................viii 圖目錄.....................................................ix 第一章 序論...............................................1 參考文獻....................................................4 第二章 理論基礎............................................5 2.1 氧化鋅薄膜材料特性....................................5 2.1.1 氧化鋅晶體結構.......................................5 2.1.2 氧化鋅薄膜之電特性....................................6 2.1.3 氧化鋅薄膜光學性質....................................6 2.1.4 氧化鋅耐米結構製備....................................7 2.2 MOS基礎理論.........................................8 2.2.1 MOS結構............................................8 2.2.2 理想MOS電容CV特性....................................9 2.2.3 反轉電容與頻率關係...................................12 2.2.4 電容器內缺限型態及其影響..............................13 2.3 電容器之理論與數值計算................................16 2.3.1 介電常數...........................................16 2.3.2 金屬半導體功函數差...................................16 2.3.3 半導體參雜濃度......................................17 2.3.4 平帶電容與平帶電壓...................................18 2.3.5 氧化層電荷.........................................19 2.3.6 介面能態密度........................................20 2.4 漏電流因素與穿隧探討.................................22 2.4.1 直接穿隧...........................................23 2.4.2 傅勒-諾得翰穿隧.....................................25 2.4.3 蕭基發射...........................................26 2.4.4 普爾-法蘭克發射.....................................27 參考文獻...................................................38 第三章 實驗製程與儀器系統...................................42 3.1 實驗製程與量測機台...................................42 3.1.1 膜厚量測儀.........................................42 3.1.2 霍爾效應...........................................43 3.1.3 濺鍍與共濺鍍原理.....................................45 3.1.4 半導體量測系統......................................46 3.2 實驗製程..........................................47 3.2.1 標準試片之製備......................................47 3.2.2 薄膜平台之製作......................................48 3.2.3 試片之熱處理........................................50 3.2.4 製作鋁電極.........................................50 參考文獻...................................................58 第四章 實驗結果與討論......................................59 4.0 濺鍍氧化鋅之通氧特性探討..............................59 4.1 氧化鋅電容器之介面特性探討............................60 4.1.1 氧化鋅介面使用氧電漿處裡之特性探討......................61 4.1.2 破真空對氧化鋅介面之特性探討...........................62 4.2 氧化鋅電容器之介面特性探討............................63 4.2.1 共濺鍍氧化鋅-二氧化矽電容器之厚度特性探討................64 4.2.2 共濺鍍氧化鋅-二氧化矽電容器之濺鍍瓦數特性探討.............65 4.2.3 共濺鍍氧化鋅-二氧化矽電容器之穩定性探討..................66 第五章 結論與未來展望......................................79 5.1 結論..............................................79 5.2 未來展望...........................................80

    [1]D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J, 46, 1288 (1967).
    [2]S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig, 521 (1995).
    [3]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories. I: Device design and fabrication”, IEEE Transactions of Electron Devices, 49, 1606 (2002).
    [4]Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories-part II: electrical characteristics”, IEEE Trans. Electron Devices, 49,1614 (2002).
    [5]M.Takata, S.Kondoh, T.Sakaguchi, H.Choi, J-C.Shim, H.Kurino and M.Koyanagi, “New non-volatile memory with extremely high density metal nano-dots”, IEDM Technical Digest, Session 22.5 (2003).
    [6]C. Lee et al., “High-k dielectrics and MOSFET characteristics”, IEDM Technical Digest, Session 22.6 (2003).
    [7]C.W. Bunn,“The lattice-dimensions of zinc oxide”Proc. Phys. Soc,835-842, (1935).
    [8]J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess,“LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO” ,Phys. Rev. B 62 1660-1665,(2000).
    [9]J. R. Chelikowsky,“An oxygen pseudopotential: Application to the electronic structure of ZnO” , Solid State Commun ,351-354, (1977).
    [10]U. Rossler,“Energy Bands of Hexagonal II-VI Semiconductors” Phys. Rev. 184, 733–738 (1969).
    [11]S. Bloom, I. Ortenburger,“Band Structure and Reflectivity of GaN”Phys. Stat. Sol. (b) ,161-168,(1973).
    [12]M. Usuda, N. Hamada, T. Kotani, M. van Schilfgaarde,“All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO”,Phys. Rev. B 66,125101,(2002).
    [13]I. Ivanov, J. Pollmann,“First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS”Phys. Rev. B 24, 6971-6980,(1993) .D. Vogel, P. Krüger, J. Pollmann, Phys. Rev. B 52 (1995) R14316.
    [14]D. Vogel, P. Krüger, J. Pollmann,“Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials” ,Phys. Rev. B 52, R14316-R14319,(1995).
    [15]Sang-Moo PARK,Tomoaki IKEGAMI,Kenji EBIHARA1,Investigation of Transparent Conductive Oxide Al-Doped ZnO Films Produced by Pulsed Laser Deposition,Japan J. Appl. Phys. 44,11,8027-8031,(2005).
    [16]Xu Zi-qiang,Deng Hong,Li Yan,Cheng Hang,“Al-doping effects on structure, electrical and optical properties of c-axis-orientated ZnO:Al thin films”,Mat. Sci. Semicon. roc.9,132-135,(2006).
    [17]M.A. Lucio-Lo peza,M.A. Luna-Ariasa,A. Maldonadoa,M. de la L. Olveraa,D.R. Acosta,“Preparation of conducting and transparent indium-doped ZnO thin films by chemical spray”,Solar Energy Materials & Solar Cells,90,733-741,(2006).
    [18]Kwang Joo ,KimYoung ,Ran Park, “Large and abrupt optical band gap variation in In-doped ZnO”,Appl. Phys. Lett. 78,4,475-477,(2001).
    [19]Yasuhiro lgasaki,Hiromi Saito, “The effects of deposition rate on the structural and electrical properties of ZnO:Al films deposited on (1,1,-2,0) oriented sapphire substrates”,J. Appl.Phys. 70,7,(1991).
    [20]A. F. Aktaruzzaman,G. L. Sharma,L. K. Malhotra, “optical and annealing characteristics of ZnO:AI films prepared by spray pyrolysis”,Thin Solid Films, 198,67-74,(1991).
    [21]K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer”, Appl. Phys. Lett., vol. 84, no. 19, pp. 3810-3812, May 2004.
    [22]M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri,“ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition”, Phys. Stat. Sol. RRL, vol. 3, no. 2–3, pp. 88-90, Feb. 2009.
    [23]L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays”, Appl. Phys. Lett., vol. 94, 203106 ,2009.
    [24]Wei-Cheng Lien, Dung-Sheng Tsai, Shu- Hsien Chiu, Debbie G. Senesky, Roya Maboudian, Albert P.Pisano, Jr-Hau He, “Nanocrystalline SiC metal-semiconductor-metal photodetector with ZnO nanorod arrays for high-temperature applications”, IEEE ,pp. 1875 - 1878 ,2010.
    [25]J. G. Lu, Z. Z. Ye, J. Y. Huang, L. P. Zhu, and B. H. Zhao, Z. L. Wang,Sz. Fujita, “ZnO quantum dots synthesized by a vapor phase transport process”, Appl. Phys. Lett., vol. 88, 063110, 2006.
    [26]陳佶亨,“磁控濺鍍製作奈米結構氧化鋅發光二極體之研究”,國立成功大學光電科學與工程研究所,碩士論文(2011).
    [27]S. M. Sze, Physics of Semiconductor Devices, Wiley & Sons Inc.,1981.
    [28]R. F. Pierret, Semiconductor Device Fundamentals, Addison Wesley,1996.
    [29]Dieter K. Schroder, “Semiconductor Material and Device Characterization”, 2rd Edition, John Wiley and Cons, Inc., 1998.
    [230]Jasprit Singh., “Semiconductor Devices Basic Principles", John Wiley and Cons, Inc., 2001.
    [31]劉漢文,“固態電子元件".
    [32]D. A. Neamen., “Semiconductor physics and devices :basic principles", Irwin, 1992.
    [33]Yamada, Y Hiwa, T. Tamane, K. Amemiya, Y. Ohshima and K.Yoshikawa, “Degradation Mechanism of Flash EEPROM Programming After Program/Erase Cycles”, Imternational Electron Devices Meeting, P.23, 1993.
    [34]Yoshkawa, S. Mori, E. Sakagami, Y. Kaneko and N. Arai,” Lucky Hole Injection Induced by Band-To-Band Tunneling Leakage in Stacked Gate Transistors”, International Electron Devices Meeting,P.577, 1990.
    [35]Kume, H. Yamaoto, T. Adachi, T. Hagiwara, K. Komori, T. Nishimoto, A. Koike, S. Meguro, T. Hayashida and T. Tsukada,” A Flash-Erase EEPROM Cell with an Asymetric Source and Drain Structure”, International Electron Devices Meeting, P.560, 1987.
    [36]Chan, J. Chen, P.K. Ko and C. Hu,” The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling”, International Electron Devices Meeting, P.718, 1987.
    [37]K. T. San, C. Kaya and T.P. Ma,” Effect of Erase Source Bias on Flash EEPROM Device Reliability”, IEEE Trans. Electron Dev. Vol.42, No. 7, P.150, Jan. 1995.
    [38]韓岱君,含碳化鐵(Fe3C)奈米磁顆粒之非晶質碳膜其微觀結構、磁性質與磁阻之研究,成大物理所博士論文,(2003).
    [39]Donald A. Neamen “Semiconductor Physics & Devices”, Third Edition (半導體物理與元件,譯者:李世鴻),美商麥格羅‧希爾國際股份有限公司,P.200).
    [40]施敏 著,黃調元 譯,“半導體元件物理與製作技術”,第二版,交大出版社(2010).
    [41]白木靖寬、吉田貞史 著,王建義 譯,“薄膜工程學”,第三版,全華圖書股份有限公司(2009).
    [42]呂助增,“真空技術與應用”,國家實驗研究院 儀器科技研究中心,(2001).
    [43]彭立琪,“氧化鋅鋁摻雜釔之透明導電薄膜材料特性與其應用在氮化鎵藍光發光二極體之研究”,國立成功大學光電科學與工程研究所,(2007).

    無法下載圖示 校內:2016-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE