| 研究生: |
謝金芳 Hsieh, Chin-Fang |
|---|---|
| 論文名稱: |
高頻超音波成像技術應用於中樞神經系統之淋巴系統 High Frequency Ultrasound Imaging for CNS Lymphatic System With Contrast Agents |
| 指導教授: |
黃執中
Huang, Chih-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 高頻超音波 、超音波對比劑 、中樞神經之淋巴系統 |
| 外文關鍵詞: | High-frequency ultrasound imaging, ultrasound contrast agents, CNS lymphatic system |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中樞神經系統之淋巴系統在多種健康狀況中扮演至關重要的角色,例如:調控體內環境平衡、免疫反應功能及廢物代謝。此系統會運輸腦脊髓液與其他分子物質到頸部深處之深頸部淋巴結。然而,現今觀測中樞神經系統之淋巴系統的技術仍有其實驗限制,例如:影像解析度不足、手術需求、動物犧牲等等。為了解決這些問題,此研究利用40 MHz高頻超音波成像技術以及兩種對比劑:微泡與奈米粒子來觀察量測此系統。
在小動物實驗中,將微泡與奈米粒子注射到側腦室,並且重點觀察與中樞神經系統之淋巴系統連結的深頸部淋巴結,此為該系統運輸物質時的首要目的地。透過組織切片與螢光反應檢測,驗證了此奈米粒子與微泡皆能進入中樞神經系統之淋巴系統並且到達深頸部淋巴結。此外,當其中一邊的深頸部淋巴結的淋巴入管被綁住時,該側淋巴結並沒有偵測到任何對比劑之訊號。
動物實驗結果顯示,高頻超音波成像技術在仿體實驗與小動物模型實驗中均能偵測到微泡與奈米粒子的訊號,並且相較於以生理實驗水注射的對照結果,這兩種對比劑在深頸部淋巴結的訊號均在30分鐘內有顯著地增加,並於20到25分鐘時達到峰值,而且兩者對中樞神經系統之淋巴系統的訊號增強效果及上升趨勢相近(微泡為0.0513±0.0114 dB/min、奈米粒子為0.0476±0.0035 dB/min)。
本研究提供了一種即時、無害與較低成本的方法來觀測中樞神經系統之淋巴系統,可進一步應用於評估量測與中樞神經系統之淋巴系統代謝相關之疾病。
Lymphatic system in the central nervous system (CNS) plays an important role in several health conditions, such as body homeostasis, immune defense and waste disposal. This system can be linked to peripheral deep cervical lymph nodes (dCLNs), which locate in the deep neck area, draining the macromolecules from the cerebrospinal fluid (CSF). However, current techniques exist some experimental limitations when operate the CNS lymphatic system observation, such as insufficient image resolution, surgical operation and animal sacrifice. Here, to overcome these problems, the 40 MHz high-frequency ultrasound (US) imaging used with two types of contrast agents, microbubbles (MBs) and nanoparticles (NPs), was applied to monitor this system. In small animal experiment, MBs and NPs were injected into the lateral ventricle, and the region of interest was focused on the dCLNs, which are the major targets of the CNS lymphatic drainage. It revealed that MBs and NPs were found in the histological and fluorescent performances of dCLNs for validations. Moreover, the lymphatic ligation resulted in no signal under US investigation. The result demonstrated that the high-frequency US imaging can detect the signals of MBs and NPs in both phantom study and small animal model experiment, and the signals of these contrast agents at dCLN areas were significantly increased within 30 minutes when compared to the saline control. The signals reached the peak intensity at 20 to 25 minutes after injection. In addition, the performances of these agents were close (0.0513±0.0114 dB/min for MBs and 0.0476±0.0035 dB/min for NPs). This novel technique provided a real-time, harmless and low cost method for the CNS lymphatic system investigation and can be further applied to diseases related to the CNS lymphatic drainage.
[1] A. Louveau et al., "Structural and functional features of central nervous system lymphatic vessels," Nature, vol. 523, no. 7560, pp. 337-41, Jul 16 2015, doi: 10.1038/nature14432.
[2] G. A. Secker and N. L. Harvey, "VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels," Dev Dyn, vol. 244, no. 3, pp. 323-31, Mar 2015, doi: 10.1002/dvdy.24227.
[3] A. Aspelund et al., "A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules," J Exp Med, vol. 212, no. 7, pp. 991-9, Jun 29 2015, doi: 10.1084/jem.20142290.
[4] N. A. Jessen, A. S. Munk, I. Lundgaard, and M. Nedergaard, "The Glymphatic System: A Beginner's Guide," Neurochem Res, vol. 40, no. 12, pp. 2583-99, Dec 2015, doi: 10.1007/s11064-015-1581-6.
[5] X. Hu et al., "Meningeal lymphatic vessels regulate brain tumor drainage and immunity," Cell Res, vol. 30, no. 3, pp. 229-243, Mar 2020, doi: 10.1038/s41422-020-0287-8.
[6] M. Valenza, R. Facchinetti, L. Steardo, and C. Scuderi, "Altered Waste Disposal System in Aging and Alzheimer's Disease: Focus on Astrocytic Aquaporin-4," Front Pharmacol, vol. 10, p. 1656, 2019, doi: 10.3389/fphar.2019.01656.
[7] W. Zou et al., "Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein," Transl Neurodegener, vol. 8, p. 7, 2019, doi: 10.1186/s40035-019-0147-y.
[8] J. J. Iliff et al., "A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β," Sci Transl Med, vol. 4, no. 147, p. 147ra111, Aug 15 2012, doi: 10.1126/scitranslmed.3003748.
[9] J. J. Iliff et al., "Brain-wide pathway for waste clearance captured by contrast-enhanced MRI," J Clin Invest, vol. 123, no. 3, pp. 1299-309, Mar 2013, doi: 10.1172/jci67677.
[10] G. Dupont, J. Iwanaga, E. Yilmaz, and R. S. Tubbs, "Connections Between Amyloid Beta and the Meningeal Lymphatics As a Possible Route for Clearance and Therapeutics," Lymphat Res Biol, vol. 18, no. 1, pp. 2-6, Feb 2020, doi: 10.1089/lrb.2018.0079.
[11] J. Kaur et al., "Magnetic Resonance Imaging and Modeling of the Glymphatic System," Diagnostics (Basel), vol. 10, no. 6, May 27 2020, doi: 10.3390/diagnostics10060344.
[12] E. Davoodi-Bojd et al., "Modeling glymphatic system of the brain using MRI," Neuroimage, vol. 188, pp. 616-627, Mar 2019, doi: 10.1016/j.neuroimage.2018.12.039.
[13] Q. Ma, B. V. Ineichen, M. Detmar, and S. T. Proulx, "Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice," Nat Commun, vol. 8, no. 1, p. 1434, Nov 10 2017, doi: 10.1038/s41467-017-01484-6.
[14] Q. Ma et al., "Lymphatic outflow of cerebrospinal fluid is reduced in glioma," Sci Rep, vol. 9, no. 1, p. 14815, Oct 15 2019, doi: 10.1038/s41598-019-51373-9.
[15] C. Gakuba et al., "General Anesthesia Inhibits the Activity of the "Glymphatic System"," Theranostics, vol. 8, no. 3, pp. 710-722, 2018, doi: 10.7150/thno.19154.
[16] P. K. Eide, S. A. S. Vatnehol, K. E. Emblem, and G. Ringstad, "Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes," Sci Rep, vol. 8, no. 1, p. 7194, May 8 2018, doi: 10.1038/s41598-018-25666-4.
[17] J. H. Ahn et al., "Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid," Nature, vol. 572, no. 7767, pp. 62-66, Aug 2019, doi: 10.1038/s41586-019-1419-5.
[18] Q. Jiang, "MRI and glymphatic system," Stroke Vasc Neurol, vol. 4, no. 2, pp. 75-77, Jul 2019, doi: 10.1136/svn-2018-000197.
[19] E. Raz et al., "Possible Empirical Evidence of Glymphatic System on Computed Tomography After Endovascular Perforations," World Neurosurg, vol. 134, pp. e400-e404, Feb 2020, doi: 10.1016/j.wneu.2019.10.089.
[20] T. Taoka and S. Naganawa, "Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective," Korean J Radiol, vol. 21, no. 11, pp. 1199-1209, Nov 2020, doi: 10.3348/kjr.2020.0042.
[21] D. S. Lee, M. Suh, A. Sarker, and Y. Choi, "Brain Glymphatic/Lymphatic Imaging by MRI and PET," Nucl Med Mol Imaging, vol. 54, no. 5, pp. 207-223, Oct 2020, doi: 10.1007/s13139-020-00665-4.
[22] A. K. Polomska and S. T. Proulx, "Imaging technology of the lymphatic system," Adv Drug Deliv Rev, vol. 170, pp. 294-311, Mar 2021, doi: 10.1016/j.addr.2020.08.013.
[23] A. Carovac, F. Smajlovic, and D. Junuzovic, "Application of ultrasound in medicine," Acta Inform Med, vol. 19, no. 3, pp. 168-71, Sep 2011, doi: 10.5455/aim.2011.19.168-171.
[24] S. Krishnamurthy et al., "Role of ultrasound-guided fine-needle aspiration of indeterminate and suspicious axillary lymph nodes in the initial staging of breast carcinoma," Cancer, vol. 95, no. 5, pp. 982-8, Sep 1 2002, doi: 10.1002/cncr.10786.
[25] M. Nieciecki et al., "The role of ultrasound and lymphoscintigraphy in the assessment of axillary lymph nodes in patients with breast cancer," J Ultrason, vol. 16, no. 64, pp. 5-15, Mar 2016, doi: 10.15557/JoU.2016.0001.
[26] C. M. Lin et al., "The application of ultrasound in detecting lymph nodal recurrence in the treated neck of head and neck cancer patients," Sci Rep, vol. 7, no. 1, p. 3958, Jun 21 2017, doi: 10.1038/s41598-017-04039-3.
[27] F. Y. Lay, P. Y. Chen, H. F. Cheng, Y. M. Kuo, and C. C. Huang, "Ex Vivo Evaluation of Mouse Brain Elasticity Using High-Frequency Ultrasound Elastography," IEEE Trans Biomed Eng, vol. 66, no. 12, pp. 3426-3435, Dec 2019, doi: 10.1109/tbme.2019.2905551.
[28] H. C. Li, P. Y. Chen, H. F. Cheng, Y. M. Kuo, and C. C. Huang, "In Vivo Visualization of Brain Vasculature in Alzheimer's Disease Mice by High-Frequency Micro-Doppler Imaging," IEEE Trans Biomed Eng, vol. 66, no. 12, pp. 3393-3401, Dec 2019, doi: 10.1109/tbme.2019.2904702.
[29] E. L. Walk, S. L. McLaughlin, and S. A. Weed, "High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes," J Vis Exp, no. 101, p. e52718, Jul 25 2015, doi: 10.3791/52718.
[30] S. T. Kang and C. K. Yeh, "Ultrasound microbubble contrast agents for diagnostic and therapeutic applications: current status and future design," Chang Gung Med J, vol. 35, no. 2, pp. 125-39, Mar-Apr 2012, doi: 10.4103/2319-4170.106159.
[31] J. Wang et al., "Extended Lifetime In Vivo Pulse Stimulated Ultrasound Imaging," IEEE Trans Med Imaging, vol. 37, no. 1, pp. 222-229, Jan 2018, doi: 10.1109/tmi.2017.2740784.
[32] S. Kato, Y. Shirai, M. Sakamoto, S. Mori, and T. Kodama, "Use of a Lymphatic Drug Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells Proliferating in the Marginal Sinuses," Sci Rep, vol. 9, no. 1, p. 13242, Sep 13 2019, doi: 10.1038/s41598-019-49386-5.
[33] S. W. Chou, Y. H. Shau, P. C. Wu, Y. S. Yang, D. B. Shieh, and C. C. Chen, "In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging," J Am Chem Soc, vol. 132, no. 38, pp. 13270-8, Sep 29 2010, doi: 10.1021/ja1035013.
[34] Y. Liu et al., "Low-toxicity FePt nanoparticles for the targeted and enhanced diagnosis of breast tumors using few centimeters deep whole-body photoacoustic imaging," Photoacoustics, vol. 19, p. 100179, Sep 2020, doi: 10.1016/j.pacs.2020.100179.
[35] F. W. Kremkau and F. Forsberg, Sonography principles and instruments. Elsevier Health Sciences, 2015.
[36] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements. CRC press, 2005.
[37] K. K. Shung, R. A. Sigelmann, and J. M. Reid, "Scattering of ultrasound by blood," IEEE Trans Biomed Eng, vol. 23, no. 6, pp. 460-7, Nov 1976, doi: 10.1109/tbme.1976.324604.
[38] P. A. Dayton and K. W. Ferrara, "Targeted imaging using ultrasound," J Magn Reson Imaging, vol. 16, no. 4, pp. 362-77, Oct 2002, doi: 10.1002/jmri.10173.
[39] K. Christensen-Jeffries, R. J. Browning, M. X. Tang, C. Dunsby, and R. J. Eckersley, "In vivo acoustic super-resolution and super-resolved velocity mapping using microbubbles," IEEE Trans Med Imaging, vol. 34, no. 2, pp. 433-40, Feb 2015, doi: 10.1109/tmi.2014.2359650.
[40] C. Errico et al., "Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging," Nature, vol. 527, no. 7579, pp. 499-502, Nov 26 2015, doi: 10.1038/nature16066.
[41] P. Song et al., "Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking," IEEE Trans Ultrason Ferroelectr Freq Control, vol. 65, no. 2, pp. 149-167, Feb 2018, doi: 10.1109/tuffc.2017.2778941.
[42] B. B. Goldberg, J. B. Liu, and F. Forsberg, "Ultrasound contrast agents: a review," Ultrasound Med Biol, vol. 20, no. 4, pp. 319-33, 1994, doi: 10.1016/0301-5629(94)90001-9.
[43] V. Paefgen, D. Doleschel, and F. Kiessling, "Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery," Front Pharmacol, vol. 6, p. 197, 2015, doi: 10.3389/fphar.2015.00197.
[44] R. Gramiak and P. M. Shah, "Echocardiography of the aortic root," Invest Radiol, vol. 3, no. 5, pp. 356-66, Sep-Oct 1968, doi: 10.1097/00004424-196809000-00011.
[45] R. Gramiak and P. M. Shah, "Echocardiography of the normal and diseased aortic valve," Radiology, vol. 96, no. 1, pp. 1-8, Jul 1970, doi: 10.1148/96.1.1.
[46] N. C. Nanda, R. Gramiak, and P. M. Shah, "Diagnosis of aortic root dissection by echocardiography," Circulation, vol. 48, no. 3, pp. 506-13, Sep 1973, doi: 10.1161/01.cir.48.3.506.
[47] P. A. Dijkmans et al., "Microbubbles and ultrasound: from diagnosis to therapy," Eur J Echocardiogr, vol. 5, no. 4, pp. 245-56, Aug 2004, doi: 10.1016/j.euje.2004.02.001.
[48] M. A. Wheatley, B. Schrope, and P. Shen, "Contrast agents for diagnostic ultrasound: development and evaluation of polymer-coated microbubbles," Biomaterials, vol. 11, no. 9, pp. 713-7, Nov 1990, doi: 10.1016/0142-9612(90)90033-m.
[49] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound Med Biol, vol. 26, no. 6, pp. 965-75, Jul 2000, doi: 10.1016/s0301-5629(00)00229-5.
[50] "SonoVue: Product Information." https://www.ema.europa.eu/en/documents/product-information/sonovue-epar-product-information_en.pdf (accessed.
[51] "Definity: Product Information." https://www.definityimaging.com/pdf/DEFINITY%20Marketing%20PI%20515987_2-0221.pdf (accessed.
[52] "Optison: Product Information." https://www.ema.europa.eu/en/documents/product-information/optison-epar-product-information_en.pdf (accessed.
[53] M. S. Shive and J. M. Anderson, "Biodegradation and biocompatibility of PLA and PLGA microspheres," Adv Drug Deliv Rev, vol. 28, no. 1, pp. 5-24, Oct 13 1997, doi: 10.1016/s0169-409x(97)00048-3.
[54] K. Bjerknes, J. U. Braenden, G. Smistad, and I. Agerkvist, "Evaluation of different formulation studies on air-filled polymeric microcapsules by multivariate analysis," Int J Pharm, vol. 257, no. 1-2, pp. 1-14, May 12 2003, doi: 10.1016/s0378-5173(03)00038-3.
[55] M. A. Wheatley, F. Forsberg, K. Oum, R. Ro, and D. El-Sherif, "Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent," Ultrasonics, vol. 44, no. 4, pp. 360-7, Nov 2006, doi: 10.1016/j.ultras.2006.04.003.
[56] C. H. Fan et al., "Enhancing Boron Uptake in Brain Glioma by a Boron-Polymer/Microbubble Complex with Focused Ultrasound," ACS Appl Mater Interfaces, vol. 11, no. 12, pp. 11144-11156, Mar 27 2019, doi: 10.1021/acsami.8b22468.
[57] W. C. Lo, C. H. Fan, Y. J. Ho, C. W. Lin, and C. K. Yeh, "Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles," Proc Natl Acad Sci U S A, vol. 118, no. 4, Jan 26 2021, doi: 10.1073/pnas.2023188118.
[58] S. W. Chou, C. L. Zhu, S. Neeleshwar, C. L. Chen, Y. Y. Chen, and C. C. Chen, "Controlled growth and magnetic property of FePt nanostructure: cuboctahedron, octapod, truncated cube, and cube," Chemistry of materials, vol. 21, no. 20, pp. 4955-4961, 2009.
[59] A. Louveau et al., "CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature," Nat Neurosci, vol. 21, no. 10, pp. 1380-1391, Oct 2018, doi: 10.1038/s41593-018-0227-9.
[60] Y. Zhang, B. Zhang, X. Fan, and D. Mao, "Clinical value and application of contrast-enhanced ultrasound in the differential diagnosis of malignant and benign breast lesions," Exp Ther Med, vol. 20, no. 3, pp. 2063-2069, Sep 2020, doi: 10.3892/etm.2020.8895.
[61] T. Nguyen and B. P. Davidson, "Contrast Enhanced Ultrasound Perfusion Imaging in Skeletal Muscle," J Cardiovasc Imaging, vol. 27, no. 3, pp. 163-177, Jul 2019, doi: 10.4250/jcvi.2019.27.e31.
[62] M. J. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, "Microbubble contrast agents: a new era in ultrasound," Bmj, vol. 322, no. 7296, pp. 1222-5, May 19 2001, doi: 10.1136/bmj.322.7296.1222.
[63] A. W. Appis, M. J. Tracy, and S. B. Feinstein, "Update on the safety and efficacy of commercial ultrasound contrast agents in cardiac applications," Echo Res Pract, vol. 2, no. 2, pp. R55-62, Jun 1 2015, doi: 10.1530/erp-15-0018.
[64] K. Ferrara, R. Pollard, and M. Borden, "Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery," Annu Rev Biomed Eng, vol. 9, pp. 415-47, 2007, doi: 10.1146/annurev.bioeng.8.061505.095852.
[65] U. Prabhakar et al., "Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology," Cancer Res, vol. 73, no. 8, pp. 2412-7, Apr 15 2013, doi: 10.1158/0008-5472.Can-12-4561.
[66] A. S. Hannah, G. P. Luke, and S. Y. Emelianov, "Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging," Theranostics, vol. 6, no. 11, pp. 1866-76, 2016, doi: 10.7150/thno.14961.
[67] O. V. Glinskii, V. H. Huxley, L. Xie, F. Bunyak, K. Palaniappan, and V. V. Glinsky, "Complex Non-sinus-associated Pachymeningeal Lymphatic Structures: Interrelationship With Blood Microvasculature," Front Physiol, vol. 10, p. 1364, 2019, doi: 10.3389/fphys.2019.01364.
[68] K. S. Hershenhouse, O. Shauly, D. J. Gould, and K. M. Patel, "Meningeal Lymphatics: A Review and Future Directions From a Clinical Perspective," Neurosci Insights, vol. 14, p. 1179069519889027, 2019, doi: 10.1177/1179069519889027.
[69] S. Liang, Q. Zhou, M. Wang, Y. Zhu, Q. Wu, and X. Yang, "Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma," Int J Nanomedicine, vol. 10, pp. 2325-33, 2015, doi: 10.2147/ijn.S75174.
[70] Y. Zheng et al., "FePt nanoparticles as a potential X-ray activated chemotherapy agent for HeLa cells," Int J Nanomedicine, vol. 10, pp. 6435-44, 2015, doi: 10.2147/ijn.S88458.
校內:2026-10-18公開