| 研究生: |
蘇芳正 Su, Fang-Cheng |
|---|---|
| 論文名稱: |
TGIF在創傷型腦損傷實驗動物模式中所扮演的角色 Involvement of TGIF in a model of traumatic brain injury |
| 指導教授: |
黃暉升
Huang, Huei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 醫學檢驗生物技術學系 Department of Medical Laboratory Science and Biotechnology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 創傷型腦損傷 、微小膠質細胞 |
| 外文關鍵詞: | TGIF, TBI, microglia |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷型腦損傷是一種高度複雜的病症,它導致許多青少年與成人的死亡與傷殘。創傷型腦損傷包含了許多效應,像是中樞神經系統的發炎反應、血腦屏障的受損、腦內氧化壓力的上升等生理上的變化,而這些效應會進一步造成中樞神經的退化、神經元的受損、凋亡與自體吞噬作用等續發型腦損傷。先前的研究已知TGF-β訊息傳遞的路徑對於神經元維持其完整性有其重要性。在另一方面,TGIF (TG-interacting factor)已知為TGF-β訊息傳遞的抑制分子,然而,TGIF在創傷型腦損傷的發展過程中所扮演的角色至今仍尚未明瞭。因此,我們將研究TGIF在創傷型腦損傷大鼠模式中所扮演的角色。在我們所得到的結果中,我們發現TGIF在大鼠腦部受創側的皮層會有過度表現的情形,而且大部分都表現在活化的微小膠質細胞內。因此我們進一步利用與發炎相關的細胞激素IFN-γ以及TNF-α刺激微小膠質細胞BV-2活化並觀察TGIF表現的情形。然而,在BV-2細胞中,我們只觀察到IFN-γ可以促進TGIF表現量上升。接著,我們進一步抑制BV-2細胞中TGIF的表現,結果發現細胞在IFN-γ刺激後所產生的活性氧分子總量會有明顯的下降,且BV-2細胞外觀也呈現較不活化的型態,顯示出TGIF可能有促進微小膠質細胞發炎反應的作用。最後,我們利用腦內注射的方式來減少大鼠腦創傷病灶處TGIF的表現,並且發現這樣的方式確實能夠降低創傷型腦損傷大鼠大腦梗塞壞死的情形、減少病灶處微小膠細胞增生的現象,並且使後肢運動能力在創傷後得到較好的回復情形。總結來說,我們認為TGIF在創傷型腦損傷後微小膠質細胞的活化扮演著重要的角色,在未來有希望可以成為減緩創傷後發續發型腦損傷的一個標的。
Traumatic brain injury (TBI), the leading cause of death and disability in young children and adults, is a highly complex disorder, including neuroinflammation, blood-brain barrier disruption, raise of oxidative stress, and other physiological alterations. Collectively, these effects result in the secondary damage, including neurodegeneration, apoptosis or autophagy of neurons, as well as neurological impairment. TG-interacting factor (TGIF) is a transcriptional co-repressor to inhibit TGF-β signaling pathway which plays a role of protector to maintain neuronal integrity. However, the role of TGIF in TBI is still unclear. Hence, we aimed to investigate the role of TGIF in a TBI rat model. In our study, we found that TGIF was overexpressed and mainly co-localized in active microglia at the peri-contusional cortex of rats underwent TBI operation. Therefore, we suggested that TGIF might be associated with microglia activation after TBI. To prove the hypothesis, two TBI-related pro-inflammatory cytokines, IFN-γ and TNF-α, were used to treat mouse microglial cell line BV-2. We found that only IFN-γ induced TGIF expression in a time- and dose-dependent manner. IFN-γ induced reactive oxygen species (ROS) production and BV-2 cells active morphology were decreased by knockdown of TGIF expression. We suggested that TGIF might promote the inflammatory responses in microglia. Finally, we used intracerebral injection to knockdown TGIF in the lesion of trauma. This method could significantly attenuate the infarction volumes, reduced microgliosis and recovered the limb motor function of the rats. Taken together, we suggest that TGIF plays an important role in TBI-induced microglia activation, and it might be a promising target to attenuate the secondary damage of TBI in the future.
Abe, K., Abe, Y., and Saito, H. (2000). Agmatine suppresses nitric oxide production in microglia. Brain Res 872, 141-148.
Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGF-beta superfamily. Science 296, 1646-1647.
Barnett, M.H., Henderson, A.P., and Prineas, J.W. (2006). The macrophage in MS: just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult Scler 12, 121-132.
Bartholin, L., Powers, S.E., Melhuish, T.A., Lasse, S., Weinstein, M., and Wotton, D. (2006). TGIF inhibits retinoid signaling. Mol Cell Biol 26, 990-1001.
Beauchamp, K., Mutlak, H., Smith, W.R., Shohami, E., and Stahel, P.F. (2008). Pharmacology of traumatic brain injury: where is the "golden bullet"? Mol Med 14, 731-740.
Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313.
Bertolino, E., Reimund, B., Wildt-Perinic, D., and Clerc, R.G. (1995). A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem 270, 31178-31188.
Block, M.L., Zecca, L., and Hong, J.S. (2007). Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57-69.
Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5, 769-784.
Borlak, J., Meier, T., Halter, R., Spanel, R., and Spanel-Borowski, K. (2005). Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours. Oncogene 24, 1809-1819.
Brionne, T.C., Tesseur, I., Masliah, E., and Wyss-Coray, T. (2003). Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133-1145.
Bruns, J., Jr., and Hauser, W.A. (2003). The epidemiology of traumatic brain injury: a review. Epilepsia 44 Suppl 10, 2-10.
Buckwalter, M.S., and Wyss-Coray, T. (2004). Modelling neuroinflammatory phenotypes in vivo. J Neuroinflammation 1, 10.
Burguillos, M.A., Deierborg, T., Kavanagh, E., Persson, A., Hajji, N., Garcia-Quintanilla, A., et al. (2011). Caspase signalling controls microglia activation and neurotoxicity. Nature 472, 319-324.
Cederberg, D., and Siesjo, P. (2010). What has inflammation to do with traumatic brain injury? Childs Nerv Syst 26, 221-226.
Chang, M.W., Young, M.S., and Lin, M.T. (2008). An inclined plane system with microcontroller to determine limb motor function of laboratory animals. J Neurosci Methods 168, 186-194.
Chao, C.C., Hu, S., Molitor, T.W., Shaskan, E.G., and Peterson, P.K. (1992). Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149, 2736-2741.
Chio, C.C., Lin, J.W., Chang, M.W., Wang, C.C., Kuo, J.R., Yang, C.Z., et al. (2010). Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 115, 921-929.
Clausen, F., Hanell, A., Bjork, M., Hillered, L., Mir, A.K., Gram, H., et al. (2009). Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 30, 385-396.
Csuka, E., Morganti-Kossmann, M.C., Lenzlinger, P.M., Joller, H., Trentz, O., and Kossmann, T. (1999). IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol 101, 211-221.
Darwish, R.S., Amiridze, N., and Aarabi, B. (2007). Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury. J Trauma 63, 439-442.
De Silva, M.J., Roberts, I., Perel, P., Edwards, P., Kenward, M.G., Fernandes, J., et al. (2009). Patient outcome after traumatic brain injury in high-, middle- and low-income countries: analysis of data on 8927 patients in 46 countries. Int J Epidemiol 38, 452-458.
Deeb, R.S., Lamon, B.D., and Hajjar, D.P. (2009). Silent Partner in Blood Vessel Homeostasis? Pervasive Role of Nitric Oxide in Vascular Disease. Curr Hypertens Rev 5, 273-282.
DeKosky, S.T., Ikonomovic, M.D., and Gandy, S. (2010). Traumatic brain injury--football, warfare, and long-term effects. N Engl J Med 363, 1293-1296.
Demange, C., Ferrand, N., Prunier, C., Bourgeade, M.F., and Atfi, A. (2009). A model of partnership co-opted by the homeodomain protein TGIF and the Itch/AIP4 ubiquitin ligase for effective execution of TNF-alpha cytotoxicity. Mol Cell 36, 1073-1085.
Deng-Bryant, Y., Singh, I.N., Carrico, K.M., and Hall, E.D. (2008). Neuroprotective effects of tempol, a catalytic scavenger of peroxynitrite-derived free radicals, in a mouse traumatic brain injury model. J Cereb Blood Flow Metab 28, 1114-1126.
Deng, Y., Thompson, B.M., Gao, X., and Hall, E.D. (2007). Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp Neurol 205, 154-165.
Di Pietro, V., Amin, D., Pernagallo, S., Lazzarino, G., Tavazzi, B., Vagnozzi, R., et al. (2010). Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model. J Neurotrauma 27, 349-359.
Dixon, C.E., Lyeth, B.G., Povlishock, J.T., Findling, R.L., Hamm, R.J., Marmarou, A., et al. (1987). A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67, 110-119.
Doering, P., Danscher, G., Larsen, A., Bruhn, M., Sondergaard, C., and Stoltenberg, M. (2007). Changes in the vesicular zinc pattern following traumatic brain injury. Neuroscience 150, 93-103.
Dohi, K., Ohtaki, H., Nakamachi, T., Yofu, S., Satoh, K., Miyamoto, K., et al. (2010). Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7, 41.
Dohi, K., Satoh, K., Nakamachi, T., Yofu, S., Hiratsuka, K., Nakamura, S., et al. (2007). Does edaravone (MCI- 186) act as an antioxidant and a neuroprotector in experimental traumatic brain injury? Antioxid Redox Signal 9, 281-287.
Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82, 47-95.
Endres, M., Meisel, A., Biniszkiewicz, D., Namura, S., Prass, K., Ruscher, K., et al. (2000). DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20, 3175-3181.
Fabry, Z., Waldschmidt, M.M., Hendrickson, D., Keiner, J., Love-Homan, L., Takei, F., et al. (1992). Adhesion molecules on murine brain microvascular endothelial cells: expression and regulation of ICAM-1 and Lgp 55. J Neuroimmunol 36, 1-11.
Feuerstein, G.Z., Wang, X., and Barone, F.C. (1998). The role of cytokines in the neuropathology of stroke and neurotrauma. Neuroimmunomodulation 5, 143-159.
Flanders, K.C., Ren, R.F., and Lippa, C.F. (1998). Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 54, 71-85.
Friedlander, R.M. (2003). Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348, 1365-1375.
Frugier, T., Morganti-Kossmann, M.C., O'Reilly, D., and McLean, C.A. (2010). In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 27, 497-507.
Gahm, C., Danilov, A., Holmin, S., Wiklund, P.N., Brundin, L., and Mathiesen, T. (2005). Reduced neuronal injury after treatment with NG-nitro-L-arginine methyl ester (L-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion. Neurosurgery 57, 1272-1281; discussion 1272-1281.
Gahm, C., Holmin, S., Wiklund, P.N., Brundin, L., and Mathiesen, T. (2006). Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion. J Neurotrauma 23, 1343-1354.
Galea, E., Feinstein, D.L., and Reis, D.J. (1992). Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A 89, 10945-10949.
Gao, J., Morrison, D.C., Parmely, T.J., Russell, S.W., and Murphy, W.J. (1997). An interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem 272, 1226-1230.
Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593-604.
Gorelik, L., and Flavell, R.A. (2002). Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2, 46-53.
Griffiths, M.R., Gasque, P., and Neal, J.W. (2010). The regulation of the CNS innate immune response is vital for the restoration of tissue homeostasis (repair) after acute brain injury: a brief review. Int J Inflam 2010, 151097.
Guan, Q.H., Pei, D.S., Zong, Y.Y., Xu, T.L., and Zhang, G.Y. (2006). Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) via nuclear and non-nuclear pathways. Neuroscience 139, 609-627.
Halliwell, B. (1992). Reactive oxygen species and the central nervous system. J Neurochem 59, 1609-1623.
Hamid, R., and Brandt, S.J. (2009). Transforming growth-interacting factor (TGIF) regulates proliferation and differentiation of human myeloid leukemia cells. Mol Oncol 3, 451-463.
Heldin, C.H., Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.
Herpin, A., Lelong, C., and Favrel, P. (2004). Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28, 461-485.
Hu, Q., Chen, C., Khatibi, N.H., Li, L., Yang, L., Wang, K., et al. (2011). Lentivirus-mediated transfer of MMP-9 shRNA provides neuroprotection following focal ischemic brain injury in rats. Brain Res 1367, 347-359.
Hu, Q., Chen, C., Yan, J., Yang, X., Shi, X., Zhao, J., et al. (2009). Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusion-induced focal ischemia rat model. Exp Neurol 216, 35-46.
Hu, Z.L., Wen, J.F., Xiao, D.S., Zhen, H., and Fu, C.Y. (2005). Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells. World J Gastroenterol 11, 84-88.
Huang, H.S., Liu, Z.M., and Hong, D.Y. (2010). Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes. Toxicol Appl Pharmacol 244, 234-241.
Hyman, C.A., Bartholin, L., Newfeld, S.J., and Wotton, D. (2003). Drosophila TGIF proteins are transcriptional activators. Mol Cell Biol 23, 9262-9274.
Imai, Y., Kuba, K., Neely, G.G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., et al. (2008). Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235-249.
Jaeger, P.A., and Wyss-Coray, T. (2009). All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol Neurodegener 4, 16.
Kadhim, H.J., Duchateau, J., and Sebire, G. (2008). Cytokines and brain injury: invited review. J Intensive Care Med 23, 236-249.
Karam, J.A., Fan, J., Stanfield, J., Richer, E., Benaim, E.A., Frenkel, E., et al. (2007). The use of histone deacetylase inhibitor FK228 and DNA hypomethylation agent 5-azacytidine in human bladder cancer therapy. Int J Cancer 120, 1795-1802.
Kempermann, G., and Neumann, H. (2003). Neuroscience. Microglia: the enemy within? Science 302, 1689-1690.
Kim, H.J., Rowe, M., Ren, M., Hong, J.S., Chen, P.S., and Chuang, D.M. (2007). Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321, 892-901.
Kim, J.B., Sig Choi, J., Yu, Y.M., Nam, K., Piao, C.S., Kim, S.W., et al. (2006). HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26, 6413-6421.
Kim, W.K., Hwang, S.Y., Oh, E.S., Piao, H.Z., Kim, K.W., and Han, I.O. (2004). TGF-beta1 represses activation and resultant death of microglia via inhibition of phosphatidylinositol 3-kinase activity. J Immunol 172, 7015-7023.
Kingsley, D.M. (1994). The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8, 133-146.
Knepper, J.L., James, A.C., and Ming, J.E. (2006). TGIF, a gene associated with human brain defects, regulates neuronal development. Dev Dyn 235, 1482-1490.
Knoblach, S.M., Fan, L., and Faden, A.I. (1999). Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol 95, 115-125.
Kong, X., Thimmulappa, R., Kombairaju, P., and Biswal, S. (2010). NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185, 569-577.
Kuno, R., Wang, J., Kawanokuchi, J., Takeuchi, H., Mizuno, T., and Suzumura, A. (2005). Autocrine activation of microglia by tumor necrosis factor-alpha. J Neuroimmunol 162, 89-96.
Kuo, J.R., Lo, C.J., Chang, C.P., Lin, K.C., Lin, M.T., and Chio, C.C. (2011). Agmatine-promoted angiogenesis, neurogenesis, and inhibition of gliosis-reduced traumatic brain injury in rats. J Trauma 71, E87-93.
Kuo, J.R., Lo, C.J., Chio, C.C., Chang, C.P., and Lin, M.T. (2007). Resuscitation from experimental traumatic brain injury by agmatine therapy. Resuscitation 75, 506-514.
Kurland, D., Hong, C., Aarabi, B., Gerzanich, V., and Simard, J.M. (2012). Hemorrhagic progression of a contusion after traumatic brain injury: a review. J Neurotrauma 29, 19-31.
Lee, H.S., Namkoong, K., Kim, D.H., Kim, K.J., Cheong, Y.H., Kim, S.S., et al. (2004). Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 68, 231-238.
Leker, R.R., and Shohami, E. (2002). Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 39, 55-73.
Lewen, A., Matz, P., and Chan, P.H. (2000). Free radical pathways in CNS injury. J Neurotrauma 17, 871-890.
Lewen, A., Skoglosa, Y., Clausen, F., Marklund, N., Chan, P.H., Lindholm, D., et al. (2001). Paradoxical increase in neuronal DNA fragmentation after neuroprotective free radical scavenger treatment in experimental traumatic brain injury. J Cereb Blood Flow Metab 21, 344-350.
Liao, K.H., Chang, C.K., Chang, H.C., Chang, K.C., Chen, C.F., Chen, T.Y., et al. (2009). Clinical practice guidelines in severe traumatic brain injury in Taiwan. Surg Neurol 72 Suppl 2, S66-73; discussion S73-64.
Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130-1132.
Liu, Z.M., Tseng, J.T., Hong, D.Y., and Huang, H.S. (2011). Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem J 438, 349-358.
Luo, C.L., Chen, X.P., Yang, R., Sun, Y.X., Li, Q.Q., Bao, H.J., et al. (2010). Cathepsin B contributes to traumatic brain injury-induced cell death through a mitochondria-mediated apoptotic pathway. J Neurosci Res 88, 2847-2858.
Maier, B., Schwerdtfeger, K., Mautes, A., Holanda, M., Muller, M., Steudel, W.I., et al. (2001). Differential release of interleukines 6, 8, and 10 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 15, 421-426.
Mannick, E.E., Bonomolo, J.C., Horswell, R., Lentz, J.J., Serrano, M.S., Zapata-Velandia, A., et al. (2004). Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 112, 247-257.
Mar, L., and Hoodless, P.A. (2006). Embryonic fibroblasts from mice lacking Tgif were defective in cell cycling. Mol Cell Biol 26, 4302-4310.
Marciano, P.G., Eberwine, J.H., Ragupathi, R., Saatman, K.E., Meaney, D.F., and McIntosh, T.K. (2002). Expression profiling following traumatic brain injury: a review. Neurochem Res 27, 1147-1155.
Marino, S., Zei, E., Battaglini, M., Vittori, C., Buscalferri, A., Bramanti, P., et al. (2007). Acute metabolic brain changes following traumatic brain injury and their relevance to clinical severity and outcome. J Neurol Neurosurg Psychiatry 78, 501-507.
Martin, E., Nathan, C., and Xie, Q.W. (1994). Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med 180, 977-984.
Masel, B.E., and DeWitt, D.S. (2010). Traumatic brain injury: a disease process, not an event. J Neurotrauma 27, 1529-1540.
McIntosh, T.K., Saatman, K.E., Raghupathi, R., Graham, D.I., Smith, D.H., Lee, V.M., et al. (1998). The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24, 251-267.
McIver, S.R., Lee, C.S., Lee, J.M., Green, S.H., Sands, M.S., Snider, B.J., et al. (2005). Lentiviral transduction of murine oligodendrocytes in vivo. J Neurosci Res 82, 397-403.
Minnich, J.E., Mann, S.L., Stock, M., Stolzenbach, K.A., Mortell, B.M., Soderstrom, K.E., et al. (2010). Glial cell line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons from dying following a traumatic brain injury. Restor Neurol Neurosci 28, 293-309.
Morganti-Kossman, M.C., Lenzlinger, P.M., Hans, V., Stahel, P., Csuka, E., Ammann, E., et al. (1997). Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 2, 133-136.
Morganti-Kossmann, M.C., Satgunaseelan, L., Bye, N., and Kossmann, T. (2007). Modulation of immune response by head injury. Injury 38, 1392-1400.
Morita-Fujimura, Y., Fujimura, M., Gasche, Y., Copin, J.C., and Chan, P.H. (2000). Overexpression of copper and zinc superoxide dismutase in transgenic mice prevents the induction and activation of matrix metalloproteinases after cold injury-induced brain trauma. J Cereb Blood Flow Metab 20, 130-138.
Morrison, B., 3rd, Eberwine, J.H., Meaney, D.F., and McIntosh, T.K. (2000). Traumatic injury induces differential expression of cell death genes in organotypic brain slice cultures determined by complementary DNA array hybridization. Neuroscience 96, 131-139.
Mulligan, R.C. (1993). The basic science of gene therapy. Science 260, 926-932.
Murphy, A.C., Lalor, S.J., Lynch, M.A., and Mills, K.H. (2010). Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24, 641-651.
Nakajima, Y., Horiuchi, Y., Kamata, H., Yukawa, M., Kuwabara, M., and Tsubokawa, T. (2010). Distinct time courses of secondary brain damage in the hippocampus following brain concussion and contusion in rats. Tohoku J Exp Med 221, 229-235.
Nampiaparampil, D.E. (2008). Prevalence of chronic pain after traumatic brain injury: a systematic review. JAMA 300, 711-719.
Natale, J.E., Ahmed, F., Cernak, I., Stoica, B., and Faden, A.I. (2003). Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 20, 907-927.
Neumann, H., Kotter, M.R., and Franklin, R.J. (2009). Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132, 288-295.
Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314-1318.
Ortolano, F., Colombo, A., Zanier, E.R., Sclip, A., Longhi, L., Perego, C., et al. (2009). c-Jun N-terminal kinase pathway activation in human and experimental cerebral contusion. J Neuropathol Exp Neurol 68, 964-971.
Park, H.S., Jung, H.Y., Park, E.Y., Kim, J., Lee, W.J., and Bae, Y.S. (2004). Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173, 3589-3593.
Pessah, M., Prunier, C., Marais, J., Ferrand, N., Mazars, A., Lallemand, F., et al. (2001). c-Jun interacts with the corepressor TG-interacting factor (TGIF) to suppress Smad2 transcriptional activity. Proc Natl Acad Sci U S A 98, 6198-6203.
Popovich, P.G., and Longbrake, E.E. (2008). Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 9, 481-493.
Pun, P.B., Lu, J., and Moochhala, S. (2009). Involvement of ROS in BBB dysfunction. Free Radic Res 43, 348-364.
Qian, L., Wei, S.J., Zhang, D., Hu, X., Xu, Z., Wilson, B., et al. (2008). Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J Immunol 181, 660-668.
Raghupathi, R., and McIntosh, T.K. (1996). Regionally and temporally distinct patterns of induction of c-fos, c-jun and junB mRNAs following experimental brain injury in the rat. Brain Res Mol Brain Res 37, 134-144.
Ramlackhansingh, A.F., Brooks, D.J., Greenwood, R.J., Bose, S.K., Turkheimer, F.E., Kinnunen, K.M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70, 374-383.
Reiter, R.J. (1995). Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J 9, 526-533.
Rock, K.L., and Kono, H. (2008). The inflammatory response to cell death. Annu Rev Pathol 3, 99-126.
Ryan, M.M., Mason-Parker, S.E., Tate, W.P., Abraham, W.C., and Williams, J.M. (2011). Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 21, 541-553.
Saha, R.N., and Pahan, K. (2006). Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8, 929-947.
Schroeter, M., and Jander, S. (2005). T-cell cytokines in injury-induced neural damage and repair. Neuromolecular Med 7, 183-195.
Schwartz, M., Shaked, I., Fisher, J., Mizrahi, T., and Schori, H. (2003). Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 26, 297-302.
Shaulian, E., and Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400.
Shiozaki, T., Hayakata, T., Tasaki, O., Hosotubo, H., Fuijita, K., Mouri, T., et al. (2005). Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406-410.
Shojo, H., Kaneko, Y., Mabuchi, T., Kibayashi, K., Adachi, N., and Borlongan, C.V. (2010). Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Neuroscience 171, 1273-1282.
Soltys, Z., Ziaja, M., Pawlinski, R., Setkowicz, Z., and Janeczko, K. (2001). Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J Neurosci Res 63, 90-97.
Soustiel, J.F., and Larisch, S. (2010). Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 7, 13-21.
Streit, W.J., Walter, S.A., and Pennell, N.A. (1999). Reactive microgliosis. Prog Neurobiol 57, 563-581.
Sullivan, P.G., Rabchevsky, A.G., Waldmeier, P.C., and Springer, J.E. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79, 231-239.
Takeuchi, H., Mizuno, T., Zhang, G., Wang, J., Kawanokuchi, J., Kuno, R., et al. (2005). Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 280, 10444-10454.
Tran, H.T., Sanchez, L., and Brody, D.L. (2012). Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol 71, 116-129.
Ushio-Fukai, M. (2006). Localizing NADPH oxidase-derived ROS. Sci STKE 2006, re8.
Vajtr, D., Benada, O., Kukacka, J., Prusa, R., Houstava, L., Toupalik, P., et al. (2009). Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res 58, 263-268.
Varma, S., Janesko, K.L., Wisniewski, S.R., Bayir, H., Adelson, P.D., Thomas, N.J., et al. (2003). F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma 20, 781-786.
Vigushin, D.M., Ali, S., Pace, P.E., Mirsaidi, N., Ito, K., Adcock, I., et al. (2001). Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res 7, 971-976.
Vodovotz, Y., and Bogdan, C. (1994). Control of nitric oxide synthase expression by transforming growth factor-beta: implications for homeostasis. Prog Growth Factor Res 5, 341-351.
Wallis, D.E., and Muenke, M. (1999). Molecular mechanisms of holoprosencephaly. Mol Genet Metab 68, 126-138.
Wotton, D., Knoepfler, P.S., Laherty, C.D., Eisenman, R.N., and Massague, J. (2001). The Smad transcriptional corepressor TGIF recruits mSin3. Cell Growth Differ 12, 457-463.
Wu, A., Wei, J., Kong, L.Y., Wang, Y., Priebe, W., Qiao, W., et al. (2010). Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro Oncol 12, 1113-1125.
Xie, Q.W., Whisnant, R., and Nathan, C. (1993). Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177, 1779-1784.
Yamashima, T., and Oikawa, S. (2009). The role of lysosomal rupture in neuronal death. Prog Neurobiol 89, 343-358.
Yang, Y., Hwang, C.K., D'Souza, U.M., Lee, S.H., Junn, E., and Mouradian, M.M. (2000). Three-amino acid extension loop homeodomain proteins Meis2 and TGIF differentially regulate transcription. J Biol Chem 275, 20734-20741.
Yi, J.H., and Hazell, A.S. (2006). Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48, 394-403.
Yi, J.H., Hoover, R., McIntosh, T.K., and Hazell, A.S. (2006). Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine. J Neurotrauma 23, 86-96.
Yildirim, F., Gertz, K., Kronenberg, G., Harms, C., Fink, K.B., Meisel, A., et al. (2008). Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp Neurol 210, 531-542.
Yu, Z., Zhang, W., and Kone, B.C. (2002). Histone deacetylases augment cytokine induction of the iNOS gene. J Am Soc Nephrol 13, 2009-2017.