簡易檢索 / 詳目顯示

研究生: 黃建彰
Huang, Chien-Chang
論文名稱: 具有變晶性結構與低溫無電鍍式製程蕭特基接觸場效元件之研究
Study of Schottky Contact Field-Effect Devices Based on Metamorphic Structure and Low-Temperature Electroless Plating (EP) Approaches
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 169
中文關鍵詞: 高電子移動率電晶體變晶性假晶性無電鍍敏化活化感測器氫氣
外文關鍵詞: High electron mobility transistor, metamorphic, pseudomorphic, electroless plating, sensitization, activation, palladium, platinum, sensor, hydrogen
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用有機金屬化學汽相沈積法及分子束磊晶法研製五種以砷化鎵及氮化鎵材料為基礎之高電子移動率場效電晶體。藉由新穎的結構設計、無電鍍沈積法及預植晶種技術,完整的探討其對元件特性之影響,包含直流、熱穩定度、微波及氫氣感測特性…等。實驗結果顯示,所研製的元件展現出良好的元件特性、高溫操作能力及優異氫氣感測能力。而這些優點表示元件適合應用於高速、高頻率、高溫電子電路及氫氣感測電路中。
    首先,在砷化銦鋁/砷化銦鎵變晶性高電子移動率電晶體上,選擇砷化銦鋁材料作為蕭特基及緩衝層、高銦含量之砷化銦鎵材料作為通道層及單、雙平面摻雜層作為載子提供層,研究其溫度對元件特性所造成的影響。就寬能隙砷化銦鋁材料而言,能有效地減少高溫下所產生的漏電流。此外,雙平面摻雜層結構的使用,能大幅地增加通道電流密度及二微電子雲濃度。因此,元件在不同溫度環境下皆具有良好的直流、微波特性及熱穩定性。
    其次,以低溫無電鍍鈀沈積法研製砷化鋁鎵/砷化銦鎵/砷化鎵擬晶性高電子移動率電晶體及砷化銦鋁/砷化銦鎵變晶性高電子移動率電晶體。藉由低溫與低能量的沈積特性,可減少表面熱破壞及表面態位密度,在鈀/砷化鋁鎵及鈀/砷化銦鋁間形成良好的蕭特基接面。從實驗的結果發現,與蒸鍍閘極元件比較,無電鍍閘極元件顯示優異的直流特性。另外,亦探討不同溫度環境下無電鍍沈積法對元件特性所造成的影響。
    最後,以敏化、活化、無電鍍鈀及鉑研製氮化鋁鎵/氮化鎵高電子移動率電晶體。利用敏化及活化方式不僅大幅降低無電鍍沈積時間且可形成更均勻且緻密的無電鍍金屬層。因此,預期能改善元件之直流、微波及氣體感測等特性。此外,所研製之元件在較大的溫度範圍內(300-600 K)有較低的溫度變化率及較佳的熱穩定性。

    In this thesis, five different GaAs- and GaN- based high electron mobility transistors (HEMTs), grown by a metal organic chemical vapor deposition (MOCVD) and a molecular beam epitaxy (MBE) system, are fabricated and studied. Through the newly designed structure, electroless plating (EP) deposition approach, and pre-seeding metal seeds approach, the device characteristics including the DC, thermal stability, microwave, and hydrogen detection performance are investigated. Experimentally, the studied devices show good device characteristics, high temperature operation capability, and excellent hydrogen detection ability. These advantages suggest that the proposed devices are suitable for high-speed, high-frequency, high-temperature electronics devices and hydrogen gas sensor applications.
    First, the InAlAs/InGaAs metamorphic high electron mobility transistors (MHEMTs), using InAlAs Schottky and buffer layers, In-rich InGaAs channel layer, and single and double δ-doped structure, are studied and demonstrated. For promising wide-gap InAlAs material, the leakage current could be effectively reduced at higher temperature. Moreover, due to the employed of double δ-doped structure, the current density in the channel and two-dimensional electron gas could be effectively increased. Hence, the studied device shows well DC, microwave, and thermal stability with wide operation region.
    Second, the AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistors (PHEMTs) and the InAlAs/InGaAs metamorphic high electron mobility transistors (MHEMTs), using an electroless plating (EP) palladium (Pd) deposition approach, are studied and investigated. Based on the low-energy and low-temperature deposition conditions, the Pd/AlGaAs and Pd/InAlAs Schottky interface suffers less thermal damages and surface states. Experimentally, as compared with thermal evaporating (TE) gate device, the EP-gate device exhibits better DC performance. In addition, the temperature-dependent characteristics of the studied devices are examined at different temperatures.
    Finally, the AlGaN/GaN high electron mobility transistors (HEMTs), with sensitization, activation, and electroless plating (EP) of palladium (Pd) and platinum (Pt) deposition approaches, are fabricated and systematically studied. The employed sensitization and activation approaches could be not only reduced the deposition time of EP but also formed the uniform and dense EP metal film. Therefore, the improvement of device performance in terms of DC, microwave, thermal stability, and gas sensing could be expected. Moreover, the lower temperature variation rate and well thermal stability of device performance over wide temperature range (300 ~ 600 K) are obtained.

    Abstract Table Lists Figure Captions Chapter 1. Introduction …………………………………………………………………… 1 1-1. Thesis Organizations …………………………………………………………………… 5 Chapter 2. Temperature-Dependent Characteristics of Metamorphic High Electron Mobility Transistors (MHEMTs) with Single and Double Delta-Doped Structures 2-1. Introduction …………………………………………………………………………………………… 7 2-2. Device Structure and Fabrication ……………………………………… 9 2-3. Experimental Results and Discussion ……………………………… 11 2-3-1 Impact Ionization ………………………………………………………………………………… 11 2-3-2 DC Performance ………………………………………………………………………………………… 11 2-3-3 Microwave Characteristics …………………………………………………………… 21 2-3-4 Power Characteristics ……………………………………………………………………… 23 2-4. Summary ………………………………………………………………………………………………………… 23 Chapter 3. Temperature-Dependent Characteristics of GaAs-Based High Electron Mobility Transistors (HEMTs) with a Low-Temperature Electroless Plating (EP) Palladium (Pd)-Gate Approach 3-1. Introduction …………………………………………………………………………………………… 25 3-2. Characteristics of Pseudomorphic High Electron Mobility Transistors (PHEMTs) ……………………………………………………………………… 26 3-2-1 Device Structure and Fabrication ……………………………………… 27 3-2-2 Experimental Results and Discussion ……………………………… 29 3-2-2-1 DC Performance ……………………………………………………………………………………… 29 3-2-2-2 Microwave Characteristics ………………………………………………………… 34 3-3. Characteristics of Metamorphic High Electron Mobility Transistors (MHEMTs) ……………………………………………………………………… 35 3-3-1 Device Structure and Fabrication ………………………………………… 35 3-3-2 Experimental Results and Discussion ………………………………… 38 3-3-2-1 DC Performance ……………………………………………………………………………………… 38 3-3-2-2 Microwave Characteristics …………………………………………………………… 45 3-4. Summary ………………………………………………………………………………………………………… 46 Chapter 4. Comprehensive Study of Electroless Plating (EP)-Based Pd- and Pt- AlGaN/GaN High Electron Mobility Transistors (HEMTs) 4-1. Introduction …………………………………………………………………………………………… 48 4-2. Device Structure ………………………………………………………………………………… 50 4-3. On an Electroless Plating (EP)-Based Pd/AlGaN/GaN High Electron Mobility Transistor (HEMT) ………………………………………… 50 4-3-1 Device Fabrication …………………………………………………………………………… 50 4-3-2 Experimental Results and Discussion ……………………………… 52 4-3-2-1 Sensitization and Activation ………………………………………………… 52 4-3-2-2 Electroless Plating (EP) of Palladium (Pd) …………… 53 4-3-2-3 Hydrogen Detection Mechanism ………………………………………………… 55 4-3-2-4 DC Performance ……………………………………………………………………………………… 56 4-3-2-5 Microwave Characteristics ………………………………………………………… 60 4-3-2-6 Hydrogen Sensing Characteristics ……………………………………… 61 4-4. On an Electroless Plating (EP)-Based Pt/AlGaN/GaN High Electron Mobility Transistor (HEMT) ………………………………………… 67 4-4-1 Device Fabrication ……………………………………………………………………………… 68 4-4-2 Experimental Results and Discussion ………………………………… 69 4-4-2-1 Sensitization and Activation ………………………………………………… 69 4-4-2-2 Electroless Plating (EP) of Platinum (Pt) ……………… 70 4-4-2-3 DC Performance ……………………………………………………………………………………… 71 4-4-2-4 Microwave Characteristics ………………………………………………………… 75 4-5. Summary ………………………………………………………………………………………………………… 76 Chapter 5. Conclusion and Prospect 5-1. Conclusion …………………………………………………………………………………………………… 78 5-2. Prospect ………………………………………………………………………………………………………… 80 References ………………………………………………………………………………………………………………………… 82 Tables Figures Publication List

    [1] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel HFET,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
    [2] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
    [3] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, J. K. Sheu, and C. S. Ho, “Enhanced AlGaN/GaN MOS-HEMT performance by using hydrogen peroxide oxidation technique,” IEEE Transactions on Electron Devices, vol. 60, pp. 213-220, 2013.
    [4] H. R. Chen, M. K. Hsu, S. Y. Chiu, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “InGaP/InGaAs pseudomorphic heterodoped-channel FETs with a field plate and a reduced gate length by splitting gate metal,” IEEE Electron Device Lett., vol. 27, pp. 948-950, 2006.
    [5] S. Ajram and G. Salmer, “Ultrahigh frequency DC-to-DC converters using GaAs power switches,” IEEE Trans. Power Electron., vol. 16, pp. 594-602, 2001.
    [6] Y. S. Lin and Y. L. Hsieh, “Effect of temperature on novel InAlGaP/GaAs/InGaAs camel-gate pseudomorphic high-electron-mobility transistors,” J. Electrochem. Soc., vol. 153, pp. G498-G501, 2006.
    [7] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, and C. Dua, “Mechanisms of RF current collapse in AlGaN-GaN high-electron mobility transistors,” IEEE Trans. Device Mater. Rel., vol. 8, pp. 240-247, 2008.
    [8] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
    [9] S. W. Tan, H. R. Chen, W. T. Chen, M. K. Hsu, A. H. Lin, and W. S. Lour, “Characterization and modeling of three-terminal heterojunction phototransistors using an InGaP layer for passivation,” IEEE Trans. Electron Devices, vol. 52, pp. 204-210, 2005
    [10] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
    [11] M. K. Tsai, S. W. Tan, Y. W. Wu, Y. J. Yang, and W. S. Lour, “Improvements in direct-current characteristics of Al0.45Ga0.55As-GaAs digital-graded superlattice-emitter HBTs with reduced turn-on voltage by wet oxidation,” IEEE Trans. Electron Devices, vol. 50, pp. 303-309, 2003.
    [12] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
    [13] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
    [14] M. Higashiwaki, N. Hirose, and T. Matsui, “Cat-CVD SiN-passivated AlGaN-GaN HFETs with thin and high Al composition barrier Layers,” IEEE Electron Device Lett., vol. 26, pp. 139-141, 2005.
    [15] T. P. Chen, S. I. Fu, S. Y. Cheng, J. H. Tsai, D. F. Guo, W. S. Lour, and W. C. Liu, “Surface treatment effect on temperature-dependent properties of InGaP/GaAs heterobipolar transistors,” J. Appl. Phys., vol. 101, pp. 034501-1-034501-5, 2007.
    [16] Y. J. Chen, W. C. Hsu, Y. W. Chen, Y. S. Lin, R. T. Hsu and Y. H. Wu, “InAlAs/InGaAs doped channel heterostructure for high-linearity, high-temperature and high-breakdown operations,” Solid-State Electron., vol. 49, pp. 163-166, 2005.
    [17] Y. S. Lin and J. H. Huang, “Mobility enhancement and breakdown behavior in InP-based heterostructure field-effect transistor,” J. Electrochem. Soc., vol. 152, pp. G627-G629, 2005.
    [18] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance improvement in tensile-strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As metamorphic HEMT,” IEEE Trans. Electron. Devices, vol. 53, pp. 406-412, 2006.
    [19] M. K. Hsu, H. R. Chen, S. Y. Chiou, W. T. Chen, G. H. Chen, Y. C. Chang, and W. S. Lour, “Gate-metal formation-related kink effect and gate current on In0.5Al0.5As/In0.5Ga0.5As metamorphic high electron mobility transistor performance,” Appl. Phys. Lett., vol. 89, pp. 033509-1-033509-3, 2006.
    [20] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As-InxGa1-xAs metamorphic HEMTs with pseudomorphic and symmetrically graded channels,” IEEE Trans. Electron. Devices, vol. 52, pp. 1079-1086, 2005.
    [21] C. S. Lee and C. H. Liao, “Relieved kink effects in symmetrically graded In0.45Al0.55As/InxGa1−xAs metamorphic high-electron-mobility transistors,” J. Appl. Phys., vol. 102, pp. 114502-1-114502-6, 2007.
    [22] K. Kalna and A. Asenov, “Role of multiple delta doping in PHEMTs scaled to sub-100 nm dimensions,” Solid-State Electron., vol. 48, pp. 1223-1232, 2004.
    [23] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., vol. 18, pp.620-626, 2003.
    [24] M. E. Baumgartner and C. J. Raub, “The electrodeposition of platinum and platinum alloys,” Platin. Met. Rev., vol. 32, pp. 188-197, 1988.
    [25] S. Uemiya, Y. Kude, K. Sugino, N. Sato, T. Matsuda, and E. Kikuchi, “A palladium/porous-glass composite membrane for hydrogen separation,” Chem. Lett., vol. 17, pp. 1687-1690, 1988.
    [26] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B-Chem., vol. 85, pp. 10-18, 2002.
    [27] Y. J. Liu, T. Y. Tsai, C. H. Yen, L. Y. Chen, T. H. Tsai, and W. C. Liu, “Characteristics of a GaN-based light-emitting diode with an inserted p-GaN/i-InGaN superlattice structure,” IEEE J. Quantum Electron., vol. 46, pp. 492-498, 2010.
    [28] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Lett., vol. 21, pp. 268-270, 2000.
    [29] C. H. Huang, J. H. Tsai, T. M. Tsai, K. Y. Hsu, W. C. Yang, H. W. Huang, and W. S. Lour, “Hydrogen sensor with Pd nanoparticles upon an interfacial layer with oxygen,” Appl. Phys. Express, vol. 3, pp. 075001-1-075001-3, 2010.
    [30] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, “High-sensitivity metal-semiconductor-metal hydrogen sensors with a mixture of Pd and SiO2 forming three-dimensional dipoles,” IEEE Electron Device Lett., vol. 29, pp. 1328-1331, 2008.
    [31] V. S. Kaper, R. M. Thompson, T. R. Prunty, and J. R. Shealy, “Signal generation, control, and frequency conversion AlGaN/GaN HEMT MMICs,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 55-65, 2005.
    [32] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “On an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET)-type hydrogen gas sensor,” IEEE Electron Device Lett., vol. 33, pp. 788-790, 2012.
    [33] I. Ohno, “Electrochemistry of electroless plating,” Mater. Sci. Eng. A, vol. A146, pp. 33-49, 1991.
    [34] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate InGaP/InGaAs pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
    [35] J. C. Huang, W. C. Hsu, C. S. Lee, Y. J. Chen, D. H. Huang, and H. H. Chen, “Investigations of delta-doped InAlAs/InGaAs/InP high-electron-mobility transistors with linearly graded InxGa1-xAs channel,” Jpn. J. Appl. Phys., vol. 44, pp. 8305-8308, 2005.
    [36] D. H. Huang, W. C. Hsu, Y. S. Lin, Y. H. Wu, R. T. Hsu, J. C. Huang, and Y. K. Liao, “Comparative study of In0.52Al0.48As/InxGa1-xAs/InP high-electron- mobility transistors with a symmetrically graded and an inversely graded channel,” Semicond. Sci. Technol., vol. 21, pp. 781-785, 2006.
    [37] C. S. Lee, W. C. Hsu, C. S. Ho, and A. Y. Kao, “Investigations on In0.45Al0.55As/InxGa1-xAs metamorphic high-elctron-mobility transistors with double gate-recess and SiNx passivation,” J. Electrochem. Soc., vol. 156, pp. H367-H371, 2009.
    [38] J. C. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, pp. 1129-1131, 1992.
    [39] J. I. Chyi, J. L. Shieh, J. W. Pan, and R. M. Lin, “Material properties of compositional graded InxGa1−xAs and InxAl1−xAs epilayers grown on GaAs substrates,” J. Appl. Phys., vol. 79, pp. 8367-8370, 1996.
    [40] M. Haupt, K. Köhler, P. Ganser, S. Müller, and W. Rothemund, “Molecular beam epitaxy of Al0.48In0.52As/Ga0.47In0.53As heterostructures on metamorphic AlxGayIn1-x-yAs buffer layers,” J. Crystal Growth, vol. 175-176, pp. 1028-1032, 1997.
    [41] Y. Cordier, S. Bollaert, J. Dipersio, D. Ferre, S. Trudel, Y. Druelle, and A. Cappy, “MBE grown InAlAs/InGaAs lattice mismatched layers for HEMT application on GaAs substrate,” Appl. Surf. Sci., vol. 123-124, pp. 734-737, 1998.
    [42] L. F. Palmateer, P. J. Tasker, W. J. Schafe, L. D. Nguyen, and L. F. Eastman, “DC and RF measurements of the kink effect in 0.2 μm gate length AlInAs/GaInAs/InP modulation-doped field-effect transistors,” Appl. Phys. Lett., vol. 54, pp. 2139-2141, 1989.
    [43] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85, pp. 5087-5089, 2004.
    [44] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang, and Y. C. Yang, “High-power-density and high-gain δ-doped In0.425Al0.575As/In0.425Ga0.575As low-voltage for operation” J. Electrochem. Society, vol. 154, pp. H185-H190, 2007.
    [45] M. Schallner and W. Konrath, “Adjustment of a temperature compensated Ka-band ring resonator VCO using fully automated laser-trimming,” International. Microwave Symposium, IEEE MTT-S 2001, Phoenix 2001, pp. 2179-82.
    [46] Y. S. Lin and B. Y. Chen, “Comprehensive characterization of In0.45Al0.55As/In0.5Ga0.5As/InxAl1-xAs metamorphic high-electron-mobility transistors on GaAs substrates,” J. Electrochem. Soc., vol. 153, pp. G1005-G1010, 2006.
    [47] C. S. Lee, Y. J. Chen, W. C. Hsu, K. H. Su, J. C. Huang, D. H. Huang, and C. L. Wu, “High-temperature threshold characteristics of a symmetrically graded InAlAs/InxGa1−xAs/GaAs metamorphic high electron mobility transistor,” Appl. Phys. Lett., vol. 88, pp. 223506-1-223506-3, 2006.
    [48] W. E. Hoke, P. J. Lemonias, J. J. Mosca, P. S. Lyman, A. Torabi, P. F. Marsh, R. A. McTaggart, S. M. Lardizabal, and K. Hetzler, “Molecular beam epitaxial growth and device performance of metamorphic high electron mobility transistor structures fabricated on GaAs substrates,” J. Vac. Sci. Technol. B, vol. 17, pp. 1130-1135, 1999.
    [49] D. Ercolani, G. Biasiol, E. Cancellieri, M. Rosini, C. Jacoboni, F. Carillo, S. Heun, L. Sorba, and F. Nolting, “Transport anisotropy in In0.75Ga0.25As two-dimensional electron gases induced by indium concentration modulation,” Phys. Rev. B, vol. 77, pp. 235307-1-235307-9, 2008.
    [50] A. Kumar, D. Pal, and D. N. Bose, “Liquid phase epitaxy growth of InGaAs with rare-earth gettering: Characterization and deep level transient spectroscopy studies,” J. Electron. Mater., vol. 24, pp. 833-840, 1995.
    [51] I. Watanabea, K. Shinoharaa, T. Kitadab, S. Shimomurab, A. Endohc, Y. Yamashitac, T. Mimurac, S. Hiyamizub, and T. Matsuia, “Thermal stability of Ti/Pt/Au ohmic contacts for cryogenically cooled InP-based HEMTs on (4 1 1)A-oriented substrates by MBE,” J. Crystal Growth, vol. 301-302, pp. 1025-1029, 2007.
    [52] J. C. Lina, P. Y. Yang, and W. C. Tsai, “Simulation and analysis of metamorphic high electron mobility transistors,” Microelectron. J., vol. 38, pp. 251-254, 2007.
    [53] D. C. Streit, T. R. Block, M. Wojtowicz, D. Pascua, R. Lai, G. I. Ng, P. H. Liu, and K. L. Tan, “Graded-channel InGaAs-InAlAs-InP high electron mobility transistors,” J. Vac. Sci. Technol. B, vol. 13, pp. 774-776, 1995.
    [54] G. Meneghesso, A. Mion, A. Neviani, M. Matloubian, J. Brown, M. Hafizi, T. Liu, C. Canali, M. Pavesi, M. Manfredi, and E. Zanoni, “Effects of channel quantization and temperature on off-state and on-state breakdown in composite channel and conventional InP-based HEMTs,” in IEDM Tech. Dig., 1996, pp. 43-46.
    [55] M. B. Dutt and D. E. Day, “Origin of thermally stimulated currents in oxide glasses,” J. Non-Cryst. Solids, vol. 71, pp. 125-132, 1985.
    [56] L. Talazac, F. Barbarin, C. Varenne, L. Mazet, S. Pellier, and C. Soulier, “Gas sensing properties of pseudo-Schottky diodes on p-type indium phosphide substrates: Application to O3 and NO2 monitoring in urban ambient air,” Sens. Actuators B-Chem., vol. 83, pp. 149-159, 2002.
    [57] C. W. Chen, P. H. Lai, W. S. Lour, D. F. Guo, J. H. Tsai, and W. C. Liu, “Temperature dependences of an In0.46Ga0.54As/In0.42Al0.58As based metamorphic high electron mobility transistor (MHEMT),” Semicond. Sci. Technol., vol. 21, pp. 1358-1363, 2006.
    [58] S. M. Sze, Semiconductor Devices: Physics and Technology, 2rd ed. New York: Wiley, 1985, pp. 237-251.
    [59] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT's with variable GaInAs channel thickness,” IEEE Trans. Electron. Devices, vol. 46, pp. 2-9, 1999.
    [60] K. Yuan and K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” IPRM. Indium Phosphide and Related Materials Conference, 2002, pp. 161-164.
    [61] Y. J. Chen, C. S. Lee, T. B. Wang, W. C. Hsu, Y. W. Chen, K. H. Su, and C. L. Wu, “Improved In0.45Al0.55As/In0.45Ga0.55As/In0.65Ga0.35As inverse composite channel metamorphic high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 44, pp. 5903-5908, 2005.
    [62] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperatures,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
    [63] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: Wiley, 2007, pp. 401-407.
    [64] P. H. Lai, S. I. Fu, C. W. Hung, Y. Y. Tsai, T. P. Chen, C. W. Chen, Y. W. Huang, and W. C. Liu, “On the temperature-dependent characteristics of metamorphic heterostructure field-effect transistors with different Schottky gate metals,” Semicond. Sci. Technol., vol. 22, pp. 475-480, 2007.
    [65] M. Dammann, A. Leuther, R. Quay, M. Meng, H. Konstanzer, W. Jantz, and M. Mikulla, “Reliability of 70 nm metamorphic HEMTs,” Microelectron. Reliab., vol. 44, pp. 939-943, 2004.
    [66] Y. C. Chou, R. Lai, D. Leung, Q. Kan, D. Farkas, D. Eng, M. Wojtowicz, P, Chin, T. Block, and A. Oki, “Gate sinking effect of 0.1 μm InP HEMT MMICs using Pt/Ti/Pt/Au,” in the Technical Digest of International Conference of Indium Phosphide and Related Materials, 2006, pp. 188-191.
    [67] Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp. 921-929, 1997
    [68] E. Bourdel, B. Delacressonniere, J. L. Gautier, C. Josse, and P. Pouvil, “Microwave monolithic analogue frequency divider with GaAs HEMT,” Microw. Opt. Technol. Lett., vol. 5, pp. 721-722, 1992.
    [69] C. S. Whelan, W. E. Hoke, R. A. McTaggart, S. M. Lardizabal, P. S. Lyman, P. F. Marsh, and T. E. Kazior, “Low noise In0.32(AlGa)0.68As/In0.43Ga0.57As metamorphic HEMT on GaAs substrate with 850 mW/mm output power density,” IEEE Electron Device Lett., vol. 21, pp. 5-8, 2000.
    [70] T. Otsuji, M. Hanabe, and O. Ogawara, “Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors,” Appl. Phys. Lett., vol. 85, pp. 2119-2121, 2004.
    [71] W. E. Hoke, T. D. Kennedy, A. Torabi, C. S. Whelan, P. F. Marsh, R. E. Leoni, C. Xu, and K.C. Hsieh, “High indium metamorphic HEMT on a GaAs substrate,” J. Cryst. Growth, vol. 251, pp. 827-831, 2003.
    [72] H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. & Technol. B, vol. 4, pp. 1130-1138, 1986.
    [73] L. W. Yin, Y. Hwang, J. H. Lee, R. M. Kolbas, R. J. Trew, and U. K. Mishra, “Improved breakdown voltage in GaAs MESFETs utilizing surface layers of GaAs grown at a low temperature by MBE,” IEEE Electron Device Lett., vol. 11, pp. 561-563, 1990.
    [74] J. Kolnik, J. Ivanco, M. Ozvold, F. Wyczisk, and J. Olivier, “Increased thermal stability of Au/GaAs metal‐insulator‐semiconductor Schottky diodes with silicon nitride interfacial layer deposited by remote plasma‐enhanced chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 5075-1-5075-6, 1993.
    [75] T. Sugimura, T. Tsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama, and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers,” Solid-State Electron, vol. 43, pp. 1571-1576, 1999.
    [76] G. Eftekhari, “Electrical characteristics of selenium-treated GaAs MIS Schottky diodes,” Semicond. Sci. Technol., vol. 8, pp. 409-411, 1993.
    [77] M. G. Kang and H. H. Park, “The effective control of Pd/GaAs interface by sulfidation and thermal hydrogenation,” Jpn. J. Appl. Phys., vol. 40, pp. 4454-, 2001.
    [78] J. S. Herman and F. L. Terry, “Plasma passivation of gallium arsenide,” J. Vac. Sci. & Technol. A, vol. 11, pp. 1094-1098, 1993.
    [79] T. Sugino, Y. Sakamoto, T. Sumiguchi, K. Nomoto, and J. Shirafuji, “Barrier heights of Schottky junctions on n-InP treated with phosphine plasma,” Jpn. J. Appl. Phys., vol. 32, pp. L1196-L1199, 1993.
    [80] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd-InP Schottky diode,” Sens. Actuators B-Chem., vol. 92, pp.6-16, 2003
    [81] H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
    [82] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
    [83] J. C. Huang, W. C. Hsu, C. S. Lee, W. C. Chang, and D. H. Huang, “Improved high-temperature characteristics of a symmetrically graded AlGaAs/InxGa1-xAs/AlGaAs pHEMT,” Semicond. Sci. Technol., vol. 21, pp. 1675-1680, 2006.
    [84] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, and W. C. Liu, “Improved temperature-dependent characteristics of a sulfur-passivated AlGaAs/InGaAs/GaAs pseudomorphic high-electron-mobility transistor,” J. Electrochem. Soc., vol. 153, pp. G632-G635, 2006.
    [85] P. H. Lai, R. C. Liu, S. I. Fu, Y. Y. Tsai, C. W. Hung, T. P. Chen, and W. C. Liu, “Effect of formal passivations on temperature-dependent characteristics of high electron mobility transistors,” J. Electrochem. Soc., vol. 154, pp. H134-H138, 2007.
    [86] Y. K. Kim, S. Kim, J. M. Seo, S. Ahn, K. J. Kim, T. K. Kang, and B. Kim, “Metal-dependent Fermi-level movement in the metal/sulfur-passivated InGaP contact,” J. Vac. Sci. Technol. A, vol. 15, pp. 1124-1128, 1997.
    [87] C. R. Moon, B. D. Choe, S. D. Kwon, and H. Lim, “Difference of interface trap passivation in Schottky contacts formed on (NH4)2Sx-treated GaAs and In0.5Ga0.5P,” J. Appl. Phys., vol. 81, pp. 2904-2906, 1997.
    [88] J. P. Collins and J. D. Way, “Preparation and characterization of a composite palladium-ceramic membrane,” Ind. Eng. Chem. Res., vol. 32, pp. 3006-3013, 1993.
    [89] S. N. Paglieri and J. D. Way, “Innovations in palladium membrane research,” Separation and Purification Methods, vol. 31, pp. 1-169, 2002.
    [90] W. M. Latimer, The Oxidation States of the Elements and their Potentials in Aqueous Solutions, New Jersey, 1952.
    [91] L. Y. Chen, H. I. Chen, S. Y. Cheng, T. P. Chen, T. H. Tsai, Y. J. Liu, Y. W. Huang, C. C. Huang, and W. C. Liu, “On the pseudomorphic high electron mobility transistors (PHEMTs) with a low-temperature gate approach,” IEEE Electron Device Lett., vol. 30, pp. 325-327, 2009.
    [92] L. Y. Chen, H. I. Chen, C. C. Huang, Y. W. Huang, T. H. Tsai, Y. C. Liu, T. Y. Chen, S. Y. Cheng, and W. C. Liu, “Characteristics of an electroless plated-gate transistor,” Appl. Phys. Lett., vol. 95, pp. 052105-1-052105-3, 2009.
    [93] K. L. Yeung, S. C. Christiansen, and A. Varma, “Palladium composite membranes by electroless plating technique Relationship between plating kinetics, film micro structure and membrane performance,” J. Membr. Sci., vol. 159, pp. 107-122, 1999.
    [94] K. E. Bohlin, “Generalized Norde plot including determination of the ideality factor,” J. Appl. Phys., vol. 60, pp. 1223-1224, 1986.
    [95] W. Wang, K. Xiong, R. M. Wallace, and K. Cho, “Impact of interfacial oxygen content on bonding, stability, band offsets, and interface states of GaAs:HfO2 interfaces,” J. Phys. Chem. C, vol. 114, pp. 22610-22618, 2010.
    [96] M. V. Fischetti, “Long-range Coulomb interactions in small Si devices. Part II. Effective electron mobility in thin-oxide structures,” J. Appl. Phys., vol. 89, pp. 1232-1250, 2001.
    [97] J. Burm, K. Chu, W. J. Schaff, L. F. Eastman, M. A. Khan, Q. Chen, J. W. Yang, and M. S. Shur, “0.12-μm gate III-V nitride HFET’s with high contact resistances,” IEEE Electron Device Lett., vol. 18, pp. 141-143, 1997.
    [98] J. H. Tsai, K. P. Zhu, Y. C. Chu, and S. Y. Chiu, “InGaP/InGaAs/GaAs camel-gate p-channel pseudomorphic modulation-doped field effect transistor,” IEE Electron. Lett., vol. 39, pp. 1611-1612, 2003.
    [99] Y. S. Lin, S. K. Liang, and Y. S. Lin, “Performance of surface and gate engineered AlGaAs/InGaAs pseudomorphic high-electron mobility transistors,” J. Electrochem. Soc., vol. 156, pp. H401-H408, 2009.
    [100] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al0.575As-In0.65Ga0.35As metamorphic HEMT,” IEEE Electron Device Letts., vol. 26, pp. 59-61, 2005.
    [101] M. K. Hsu, H. R. Chen, S. Y. Chiu, W. T. Chen, W. C. Liu, J. H. Tsai, and W S Lour, “Characteristics of mesa- and air-type In0.5Al0.5As/In0.5Ga0.5As metamorphic HEMTs with or without a buried gate,” Semicond. Sci. Technol., vol. 22, pp. 35-42, 2007.
    [102] A. V. Vertiatchikh and L. F. Eastman, “Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance,” IEEE Electron Device Lett., vol. 24, pp. 535-537, 2003.
    [103] Y. L. Chou, R. M. Lin, M. H. Tung, C. L. Tsai, J. C. Li, I. C. Kuo, and M. C. Wu, “Improvement of surface emission for GaN-based light-emitting diodes with a metal-via-hole structure embedded in a reflector,” IEEE Photonics Technol. Lett., vol. 23, pp. 393-395, 2011.
    [104] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode,” Appl. Phys. Lett., vol. 80, pp. 3754-3756, 2002.
    [105] T. B. Wang, W. C. Hsu, J. L. Su, R. T. Hsu, Y. H. Wu, Y. S. Lin, and K. H. Su, “Comparison of Al0.32Ga0.68N/GaN heterostructure field-effect transistors with different channel thicknesses,” J. Electrochem. Soc., vol. 154, pp. H131-H133, 2007.
    [106] J. Schalwig, , G. Müller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sens. Actuators B-Chem., vol. 87, pp. 425-430, 2002.
    [107] J. R. Creighton and M. E. Coltrin, “Origin of reaction-induced current in Pt/GaN catalytic nanodiodes,” J. Phys. Chem. C, vol. 116, pp. 1139-1144, 2012.
    [108] B. S. Kang, H. T. Wang, F. Ren, B. P. Gila, C. R. Abernathy, S. J. Pearton, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region,” Appl. Phys. Lett., vol. 91, pp. 012110-1-012110-3, 2007.
    [109] F. V Raay, R. Quay, R. Kiefer, F. Benkhelifa, B. Raynor, W. Pletschen, M. Kuri, H. Massler, S. Müller, M. Dammann, M. Mikulla, M. Schlechtweg, and G. Weimann, “A coplanar X-band AlGaN/GaN power amplifier MMIC on s.i. SiC substrate,” IEEE Microw. Wirel. Compon. Lett., vol. 15, pp. 460-462, 2005.
    [110] S. W. Tan, J. H. Tsai, S. W. Lai, C. Lo, and W. S. Lour, “Hydrogen-sensitive sensor with stabilized Pd-mixture forming sensing nanoparticles on an interlayer,” Int. J. Hydrog. Energy, vol. 36, pp. 15446-15454, 2011.
    [111] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal-insulator-semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol., vol. 16, pp. 997-1001, 2001.
    [112] M. Charbonnier, M. Romand, E. Harry, and M. Alami, “Surface plasma functionalization of polycarbonate: Application to electroless nickel and copper plating,” J. Appl. Electrochem., vol. 31, pp. 57-63, 2001.
    [113] M. L. Chou, N. Manning, and H. Chen, “Deposition and characterization of thin electroless palladium films from newly developed baths,” Thin Solid Films, vol. 213, pp. 64-71, 1992.
    [114] S. S. Behrens, “Synthesis of inorganic nanomaterials mediated by protein assemblies,” J. Mater. Chem., vol. 18, pp. 3788-3798, 2008.
    [115] P. Bindra and J. Tweedie, “Mechanisms of electroless metal plating,” J. Electrochem. Soc., vol. 130, pp. 1112-1114, 1983.
    [116] V. Dubin and Y. Shacham-Diamond, “Selective and blanket electroless copper deposition for ultralarge scale integration,” J. Electrochem. Soc., vol. 144, pp. 898-908, 1997.
    [117] R. N. Rhoda, “Electroless palladium plating,” Trans. Inst. Metal Finish., vol. 36, pp. 82-85, 1959.
    [118] M. S. Antelman, Encyclopedia of Chemical Electrode Potentials, Plenum Press, New York, 1982.
    [119] K. W. Lin and R. H. Chang, “Comprehensive study of pseudomorphic high electron mobility transistor (pHEMT)-based hydrogen sensor,” Sens. Actuators B-Chem., vol. 119, pp. 47-51, 2006.
    [120] V. K. Bulasara, H. Thakuria, R. Uppaluri, and M. K. Purkait, “Effect of process parameters on electroless plating and nickel-ceramic composite membrane characteristics,” Desalination, vol. 268, pp. 195-203, 2011.
    [121] C. C. Huang, H. I. Chen, S. Y. Cheng, L. Y. Chen, T. H. Tsai, Y. C. Liu, T. Y. Chen, C. H. Hsu, and W. C. Liu, “On the characteristics of an electroless plated (EP)-based pseudomorphic high electron mobility transistor (PHEMT),” Solid-State Electron., vol. 61, pp. 13-17, 2011.
    [122] C. C. Huang, H. I. Chen, T. Y. Chen, C. S. Hsu, C. C. Chena, H. S. Chang, and W. C. Liu, “On the temperature-dependent characteristics of a Pd/InAlAs based electroless-plating gate metamorphic heterostructure field-effect transistor (MHFET),” Solid-State Electron., vol. 79, pp. 50-55, 2013.
    [123] C. S. Lee, “Comparative studies on temperature-dependent characteristics of passivated In0.2Ga0.8AsSb/GaAs high-electron-mobility transistors,” J. Electrochem. Soc., vol. 156, pp. H87-H91, 2009.
    [124] M. Higashiwaki, S. Chowdhury, B. L. Swenson, and U. K. Mishra, “Effects of oxidation on surface chemical states and barrier height of AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 97, pp. 222104-1-222104-3, 2010.
    [125] H. Y. Liu, B. Y. Chou, W. C. Hsu, C. S. Lee, and C. S. Ho, “Temperature-dependent investigation of AlGaN/GaN oxide-passivated HEMT by using hydrogen peroxide oxidation method,” ECS J. Solid State Sci. Technol., vol. 1, pp. Q86-Q90, 2012.
    [126] Y. C. Chou, D. Leung, I. Smorchkova, M. Wojtowicz, R. Grundbacher, L. Callejo, Q. Kan, R. Lai, P.H. Liu, D. Eng, and A. Oki, “Degradation of AlGaN/GaN HEMTs under elevated temperature lifetesting,” Microelectron. Reliab., vol. 44, pp. 1033-1038, 2004.
    [127] T. Egawa, G. Y. Zhao, H. Ishikawa, M. Umeno, and T. Jimbo, “Characterizations of recessed gate AlGaN/GaN HEMTs on sapphire,” IEEE Trans. Electron Devices, vol. 48, pp. 603-608, 2001.
    [128] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates,” Appl. Phys. Lett., vol. 80, pp. 2186-1-2186-3, 2002.
    [129] C. S. Hsu, H. I. Chen, C. F. Chang, T. Y. Chen, C. C. Huang, P. C. Chou, and W. C. Liu, “On the hydrogen sensing characteristics of a Pd/AlGaN/GaN heterostructure field-effect transistor (HFET),” Sens. Actuators B-Chem., vol. 165, pp. 19-23, 2012.
    [130] T. H. Tsai, H. I. Chen, C. F. Chang, P. S. Chiu, Y. C. Liu, L. Y. Chen, T. P. Chen, and W. C. Liu, “Hydrogen sensing properties of a metamorphic high electron mobility transistor,” Appl. Phys. Lett., vol. 94, pp. 012102-1-012102-3, 2009.
    [131] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs-based Schottky diodes,” IEEE Trans. Electron Devices, vol. 50, pp. 2532-2539, 2003.
    [132] C. W. Hung, K. W. Lin, R. C. Liu, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “On the hydrogen sensing properties of a Pd/GaAs transistor-type gas sensor in a nitrogen ambiance,” Sens. Actuators B-Chem., vol. 125, pp. 22-29, 2007.
    [133] Y. Morita, W. K. Nakamura, and C. Kim, “Langmuir analysis on hydrogen gas response of palladium-gate FET,” Sens. Actuators B-Chem., vol. 33, pp. 96-99, 1996.
    [134] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diode in air and N2 atmospheres,” Sens. Actuators B-Chem., vol. 123, pp. 1040-1048, 2007.
    [135] R. J. Silbey and R. A. Alberty, Physical Chemistry, third ed., Wiley, New York, 2001.
    [136] T. H. Tsai, H. I. Chen, T. Y. Chen, L. Y. Chen, Y. J. Liu, C. C. Huang, K. S. Hsu, and W. C. Liu, “Hydrogen sensing properties of a Pd/oxide/InAlAs metamorphic-based transistor,” Int. J. Hydrog. Energy, vol. 35, pp. 3903-3907, 2010.
    [137] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd‐ and Pt‐GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, pp. 8175-8181, 1994.
    [138] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sens. J., vol. 4, pp. 72-79, 2004.
    [139] C. W. Hung, H. C. Chang, Y. Y. Tsai, P. H. Lai, S. I. Fu, T. P. Chen, H. I. Chen, and W. C. Liu, “Study of a new field-effect resistive hydrogen,” IEEE Trans. Electron Devices, vol. 52, pp. 1224-1231, 2007.
    [140] T. H. Tsai, H. I. Chen, K. W. Lin, T. Y. Chen, C. C. Huang, K. S. Hsu, and W. C. Liu, “A hydrogen sensor based on a metamorphic high electron mobility transistor (MHEMT),” Microelectron. Reliab., vol. 50, pp. 734-737, 2010.
    [141] T. Fujii and M. Ito, “Catalyst preparation by electroless plating and hydrogen direct reduction methods: Practical application for a high cell performance PEFC,” Fuel Cells, vol. 6, pp. 356-360, 2006.
    [142] M. E. Ayturk and Y. H. Ma, “Electroless Pd and Ag deposition kinetics of the composite Pd and Pd/Ag membranes synthesized from agitated plating baths,” J. Membr. Sci., vol. 330, pp. 233-245, 2009.
    [143] E. W. Schmidt, Hydrazine and Its Derivatives: Preparation, Properties and Applications, Wiley, New York, 1984.
    [144] C. R. K. Rao and D. C. Trivedi, “Chemical and electrochemical depositions of platinum group metals and their applications,” Coordination Chemistry Reviews, vol. 249, pp. 613-631, 2005.
    [145] D. J. Díaz, T. L. Williamson, X. Guo, A. Sood, and P. W. Bohn, “Electroless deposition of gold and platinum for metallization of the intrapore space in porous gallium nitride,” Thin Solid Films, vol. 514, pp. 120-126, 2006.
    [146] J. Appenzeller, M. Radosavljevic´, J. Knoch, and P. Avouris, “Tunneling versus thermionic emission in one-dimensional semiconductors,” Phys. Rev. Lett., vol. 92, pp. 048301-1-048301-4, 2004.
    [147] C. S. Lee and A. Y. Kao, “Investigations on SiN-passivated Γ-Gate Al0.27Ga0.73N/GaN high electron mobility transistors,” J. Electrochem. Soc., vol. 157, pp. H202-H207, 2010.
    [148] N. Q. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, “Effects of surface traps on breakdown voltage and switching speed of GaN power switching HEMTs,” IEDM International Electron Devices Meeting Tech. Dig., pp. 25.5.1-25.5.4, 2001.
    [149] P. H. Lai, S. I. Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Thermal-stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs HFET,” IEEE Trans. Device Mater. Reliab., vol. 6, pp. 52-59, 2006.
    [150] J. H. Tsai, T. Y. Weng, and K. P. Zhu, “Investigation of InGaP/InGaAs n- and p-channel pseudomorphic modulation-doped field effect transistors with high gate turn-on voltages,” Superlattices Microstruct., vol. 43, pp. 73-80, 2008.

    無法下載圖示 校內:2018-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE