簡易檢索 / 詳目顯示

研究生: 許安
Hsu, Ann
論文名稱: 低維層狀鋅銦硫族化物之合成與鑑定
Synthesis and Characterization of Low-Dimensional Zinc Indium Sulfide
指導教授: 許桂芳
Hsu, Kuei-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 65
中文關鍵詞: 二維層狀材料非線性光學材料壓電性質
外文關鍵詞: two-dimensional layered materials, nonlinear optical materials, piezoelectric properties
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用助熔長晶法,成功的合成出新穎硫族化合物K1.33Zn1.33-3xIn4-2xS8,其對稱性空間群為Trigonal R3m,單位晶格長為a=b=3.8439(3)Å,c=62.280(9)Å。本篇論文在層狀ZnmIn2S3+m系統中插入K陽離子,插入K+後會改變ZnmIn2S3+m系統中以往的結構,像是ZnIn2S4為以層中間一八面體兩側各延伸出一四面體形成三鏈為一層的結構,Zn2In2S5為層中間一八面體兩側分別為一四面體跟兩個四面體組成四鏈為一層的結構。但插入K+後改變了該系統的層狀規律,將不再是以八面體為中心向兩側延伸四面體的結構,而是一層由InS6八面體跟MS4 (M=Zn/In) 四面體組成形成兩鏈為一層的結構,而一個unit cell中,由六個層延c軸排列所組成,每層由InS6八面體跟MS4 (M=Zn/In) 四面體以共角形式連接,形成兩種類型的層,上述六個層由這兩種類型的層重複排列而成。而層與層之間具有K+陽離子插入,以維持整體結構的電荷平衡。且有文獻表示具有極性的化合物會具有鐵電性質1以及二次諧波產生,因此本篇研究也對上述兩種性質進行量測,發現該材料具有不錯的二倍頻訊號,但並沒有鐵電性質,不過目前發現它具有微弱的壓電性質。

    In this work, a novel layered metal chalcogenide K1.33Zn1.33-3xIn4-2xS8 was synthesized by solid-state reaction. This structure crystallizes in a non-centrosymmetric space group of Trigonal R3m with cell parameters a = 3.8439(3) Å, c=62.280(9) Å. We successfully inserted K cations into the layered ZnmIn2S3+m (m=1~5) system. After insertion of K cations, the layered structure of the ZnmIn2S3+m system will change, and no longer have an octahedral as the center and grow tetrahedra along the sides. The structure of this layered compound is composed of InS6 octahedral and MS4 (M=Zn/In) tetrahedra connected in the form of corner sharing, and K cation insertion between the layers. According to crystallography, we had known that polar compounds have a second harmonic generator respond and may have ferroelectric properties. Our compound is non-centrosymmetric structure, so it may have both properties. However, according to the measurement results, we found that the compound does not have ferroelectric properties, but has weak piezoelectric properties.

    摘要I 誌謝XV 目錄XVI 圖目錄XIX 表目錄XXIII 第一章 緒論1 第二章 合成與鑑定7 2-1單晶合成方法7 2-4能量散佈光譜分析 (Energy Dispersive Spectrum Analysis,EDS)10 2-2 K1.33Zn0.9(5)In4.4(3)S8單晶X光繞射分析 (Single Crystal X-ray Diffraction Analysis of K1.33Zn0.9(5)In4.4(3)S8,SC-XRD)11 2-3粉末X光繞射分析 (Powder X-ray Diffraction Analysis,PXRD)14 2-5差熱分析 (Differential Thermal Analysis,DTA)14 2-6微光激發螢光光譜分析 (Micro-Photoluminescence Spectrum Analysis,PL)15 2-7紫外光-可見-近紅外光光譜儀分析(UV-VIS-NIR Spectrometer)16 2-8二倍頻量測 (Second Harmonic Generation Measurement,SHG)18 2-9紅外光光譜(Infrared Spectroscopy, IR)19 2-10壓電效應的測量 (measurement of piezoelectric effect)19 2-11表面凱爾文探針掃描光譜儀與光電子能譜儀 (Scanning Kelvin Probe and Air Photoemission Spectroscopy,KP & Photoemission)20 第三章 結果與討論22 3-1單晶結構鑑定22 3-2組成元素鑑定31 3-3純相合成與鑑定33 3-4化合物之熱穩定性36 3-5光激發螢光光譜37 3-6拉曼光譜38 3-7化合物之能隙鑑定40 3-7-1能階圖 (Energy diagram) 分析40 3-8非線性光學性質鑑定42 3-9紅外光區穿透度鑑定47 3-10鐵電性質與壓電性質之鑑定48 第四章 結論57 附錄58 表A-1 化合物K1.33Zn0.9(5)In4.4(3)S8之完整單晶繞射數據58 表A-2化合物K1.33Zn0.9(5)In4.4(3)S8之原子位置、熱擾動參數跟佔有率59 表A-3化合物K1.33Zn0.9(5)In4.4(3)S8之鍵長資料 (Å) (M=Zn/In)60 表A-4化合物K1.33Zn0.9(5)In4.4(3)S8之鍵角 (M=Zn/In)61 參考文獻62

    1. Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35 (8), 710-717.
    2. Chaves, A.; Azadani, J. G.; Alsalman, H.; Da Costa, D.; Frisenda, R.; Chaves, A.; Song, S. H.; Kim, Y. D.; He, D.; Zhou, J. Bandgap engineering of two-dimensional semiconductor materials. NPJ 2D Mater. Appl. 2020, 4 (1), 1-21.
    3. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (30), 10451-10453.
    4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
    5. Chepkasov, I. V.; Ghorbani-Asl, M.; Popov, Z. I.; Smet, J. H.; Krasheninnikov, A. V. Alkali metals inside bi-layer graphene and MoS2: Insights from first-principles calculations. Nano Energy 2020, 75, 104927.
    6. Wu, K.; Zhang, B.; Yang, Z.; Pan, S. New compressed chalcopyrite-like Li2BaMIVQ4 (MIV= Ge, Sn; Q= S, Se): promising infrared nonlinear optical materials. J. Am. Chem. Soc. 2017, 139 (42), 14885-14888.
    7. Allakhverdiev, K.; Yetis, M.; Özbek, S.; Baykara, T.; Salaev, E. Y. Effective nonlinear GaSe crystal. Optical properties and applications. Laser Phys 2009, 19 (5), 1092-1104.
    8. Song, J.-H.; Freeman, A. J.; Bera, T. K.; Chung, I.; Kanatzidis, M. G. First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides. Phys. Rev. B 2009, 79 (24), 245203.
    9. Chung, I.; Jang, J. I.; Malliakas, C. D.; Ketterson, J. B.; Kanatzidis, M. G. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials. J. Am. Chem. Soc. 2010, 132 (1), 384-389.
    10. Chung, I.; Song, J.-H.; Jang, J. I.; Freeman, A. J.; Kanatzidis, M. G. Na2Ge2Se5: A highly nonlinear optical material. J Solid State Chem 2012, 195, 161-165.
    11. Friedrich, D.; Byun, H. R.; Hao, S.; Patel, S.; Wolverton, C.; Jang, J. I.; Kanatzidis, M. G. Layered and Cubic Semiconductors A Ga M′ Q 4 (A+= K+, Rb+, Cs+, Tl+; M′ 4+= Ge4+, Sn4+; Q 2–= S2–, Se2–) and High Third-Harmonic Generation. J. Am. Chem. Soc. 2020, 142 (41), 17730-17742.
    12. Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. Strong second-harmonic generation in atomic layered GaSe. J. Am. Chem. Soc. 2015, 137 (25), 7994-7997.
    13. Liu, X.; Guo, Q.; Qiu, J. Emerging low‐dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29 (14), 1605886.
    14. Shi, X.; Dai, C.; Wang, X.; Hu, J.; Zhang, J.; Zheng, L.; Mao, L.; Zheng, H.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13 (1), 1-10.
    15. Wei, L.; Chen, Y.; Zhao, J.; Li, Z. Preparation of NiS/ZnIn2S4 as a superior photocatalyst for hydrogen evolution under visible light irradiation. Beilstein J. Nanotechnol. 2013, 4 (1), 949-955.
    16. Shen, S.; Zhao, L.; Guo, L. ZnmIn2S3+ m (m= 1–5, integer): a new series of visible-light-driven photocatalysts for splitting water to hydrogen. Int. J. Hydrog. Energy 2010, 35 (19), 10148-10154.
    17. Haque, F.; Daeneke, T.; Kalantar-Zadeh, K.; Ou, J. Z. Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nanomicro Lett 2018, 10 (2), 1-27.
    18. Zhang, G.; Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy Environ. 2020.
    19. Yadav, G.; d Ahmaruzzaman, M. ZnIn2S4 and ZnIn2S4 based advanced hybrid materials: structure, morphology and applications in environment and energy. Inorg Chem Commun 2022, 109288.
    20. Kalomiros, J.; Anagnostopoulos, A.; Spyridelis, J. Temperature dependence of the energy gap and some electrical properties of Zn2In2S5 (II) single crystals. Semicond Sci Technol 1989, 4 (7), 536.
    21. Machuga, A.; Radu, R.; Pintea, V.; Arama, E.; Zhitar, V.; Shemyakova, T. In X-ray luminescence in ZnIn 2 S 4, CdGa 2 S 4 and Zn 3 In 2 S 6, 2007 International Semiconductor Conference, IEEE: 2007; pp 377-380.
    22. Susilo, R. A.; Liu, Y.; Sheng, H.; Dong, H.; Sereika, R.; Kim, B.; Hu, Z.; Li, S.; Yuan, M.; Petrovic, C. A tunable band gap of the layered semiconductor Zn 3 In 2 S 6 under pressure. J. Mater. Chem. C 2022, 10 (5), 1825-1832.
    23. Han, H.; Yang, Y.; Liu, J.; Zheng, X.; Wang, X.; Meng, S.; Zhang, S.; Fu, X.; Chen, S. Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation. ACS Appl. Energy Mater. 2020, 3 (11), 11275-11284.
    24. Ding, W.; Zhu, J.; Wang, Z.; Gao, Y.; Xiao, D.; Gu, Y.; Zhang, Z.; Zhu, W. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8 (1), 1-8.
    25. Lu, Y.; Sinnott, S. B. Density functional theory study of epitaxially strained monolayer transition metal chalcogenides for piezoelectricity generation. ACS Appl. Nano Mater. 2019, 3 (1), 384-390.
    26. Shen, S.; Zhao, L.; Guo, L. ZnmIn2S3+m (m=1–5, integer): A new series of visible-light-driven photocatalysts for splitting water to hydrogen. Int. J. Hydrog. Energy 2010, 35 (19), 10148-10154.
    27. Zhang, W.; Yu, H.; Wu, H.; Halasyamani, P. S. Phase-matching in nonlinear optical compounds: a materials perspective. Chem. Mater. 2017, 29 (7), 2655-2668.
    28. Zhou, Y.; Wu, D.; Zhu, Y.; Cho, Y.; He, Q.; Yang, X.; Herrera, K.; Chu, Z.; Han, Y.; Downer, M. C. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett. 2017, 17 (9), 5508-5513.
    29. Miclau, M.; Miclau, N.; Poienar, M.; Grozescu, I. A new piezoelectric single crystal obtained by Ge doping in the SiO2 structure. Cryst. Res. Technol. 2009, 44 (6), 577-580.
    30. da Cunha Rodrigues, G.; Zelenovskiy, P.; Romanyuk, K.; Luchkin, S.; Kopelevich, Y.; Kholkin, A. Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates. Nat. Commun. 2015, 6 (1), 1-6.
    31. Joffe, H.; Berlincourt, D.; Krueger, H.; Shiozawa, L. In Piezoelectric properties of cadmium sulfide crystals, 14th Annual Symposium on Frequency Control, IEEE: 1960; pp 19-23.
    32. Sultana, A.; Middya, T. R.; Mandal, D. In ZnS-paper based flexible piezoelectric nanogenerator, AIP Conference Proceedings, AIP Publishing LLC: 2018; p 120018.
    33. Zhang, Q.; Bu, X.; Zhang, J.; Wu, T.; Feng, P. Chiral semiconductor frameworks from cadmium sulfide clusters. J. Am. Chem. Soc. 2007, 129 (27), 8412-8413.
    34. Hu, L.; Huang, X. Peculiar electronic, strong in-plane and out-of-plane second harmonic generation and piezoelectric properties of atom-thick α-M 2 X 3 (M= Ga, In; X= S, Se): role of spontaneous electric dipole orientations. RSC Adv. 2017, 7 (87), 55034-55043.

    下載圖示 校內:2024-08-11公開
    校外:2024-08-11公開
    QR CODE