簡易檢索 / 詳目顯示

研究生: 王映筑
Wang, Ying-Chu
論文名稱: 陽極氧化法製備氧化鋅奈米管/奈米線結構於光催化降解玫瑰紅B染料
Fabrication of zinc oxide nanotube/nanowire structure by anodic oxidation for photocatalytic degradation of rhodamine B dye
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 氧化鋅奈米管/奈米線陽極氧化法光催化玫瑰紅B
外文關鍵詞: zinc oxide, nanotube/nanowire, anodic oxidation, photocatalysis, rhodamine B
相關次數: 點閱:74下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗以一種對環境友善且快速的方法製備低成本且無毒的氧化鋅光催化劑,利用陽極氧化法施加定電位在鋅金屬基板表面上形成氧化鋅奈米管/奈米線結構 (Zinc oxide nanotube/nanowire structure) ,將其應用在光催化降解玫瑰紅B染料 (Rhodamine B) ,後續也透過修飾金屬鈀於氧化鋅奈米管/奈米線結構之材料改質實驗,改善氧化鋅光催化劑電子電洞再結合快速之問題。
    於室溫下進行陽極氧化反應,使用由碳酸氫鈉與碳酸鈉組成之緩衝溶液作為陽極氧化過程中的電解質,調控製備氧化鋅奈米管/奈米線結構陽極氧化過程的實驗參數進行條件優化,其影響變因有電解質濃度、電解質pH值、陽極氧化電壓、陽極氧化持續時間,再藉由高解析度掃描式電子顯微鏡 (SEM) 對氧化鋅奈米管/奈米線結構進行表面形貌分析,能量分散式光譜分析儀 (EDS) 與化學分析電子光譜儀 (ESCA) 進行元素表面組成分析,X射線繞射儀 (XRD) 鑑定氧化鋅晶體結構,紫外光/可見光光譜儀 (UV-Vis) 測量紫外/可見光漫反射光譜求得氧化鋅能隙值,陽極氧化反應製備氧化鋅奈米管/奈米線結構最適化條件依電解質濃度、電解質pH值、陽極氧化電壓、陽極氧化持續時間、退火溫度分別為 10 mM、pH 10.25、8 V、360 s、400℃ ,以此條件下製備氧化鋅奈米管/奈米線結構應用於光催化反應降解玫瑰紅B染料,並探討不同變因對光催化反應之影響及穩定度測試。
    在光催化降解玫瑰紅B染料的實驗,為了提高原先氧化鋅奈米管/奈米線結構之光催化活性,促進光生電子電洞對之分離效率,透過化學浸漬法修飾金屬鈀對氧化鋅改性,其能隙值也由3.21 eV 縮小至3.15 eV,未修飾金屬鈀之氧化鋅奈米管/奈米線結構光催化降解率為 23.9% ,修飾金屬鈀後的氧化鋅奈米管/奈米線結構光催化降解率提升至39.6%。

    In this work, a low-cost and non-toxic zinc oxide photocatalyst was prepared by an environmentally friendly method. Zinc oxide nanotube/nanowire structure was formed on the surface of a zinc metal substrate by anodic oxidation. The prepared zinc oxide nanotube/nanowire structure was characterized by high resolution scanning electron microscope (HR-SEM), energy dispersive spectrometer (EDS), X-ray diffractometer (XRD), electron spectroscopy for chemical analysis (ESCA), ultraviolet/visible spectrometer (UV-Vis). Optimization of the experimental parameters for the preparation of zinc oxide nanotube/nanowire structure depends on the electrolyte concentration, electrolyte pH, anodizing voltage, anodizing duration and annealing temperature. Zinc oxide nanotube/nanowire structure was used for the photocatalytic degradation of rhodamine B dye. In order to enhance photodegradation activity of rhodamine B in aqueous solution, by modification of metal palladium on zinc oxide nanotube/nanowire structure to promote the separation efficiency of photogenerated electron-hole pairs. The degradation rate of RhB increased from 23.9% to 39.6%.

    摘要 I 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XX 第一章 緒論 1 1-1. 前言 1 1-2. 研究動機 2 1-3. 研究目的 4 第二章 實驗與鑑定儀器原理 5 2-1. 實驗原理 5 2-1-1. 氧化鋅簡介 5 2-1-2. 電化學原理 6 2-1-3. 陽極氧化法及氧化鋅生長機制 6 2-1-4. 退火熱處理機制 10 2-1-5. 紫外/可見光漫反射光譜分析 11 2-1-6. 光催化機制 13 2-1-7. 玫瑰紅B染料光催化降解反應 16 2-2. 儀器原理 22 第三章 實驗內容 27 3-1. 實驗流程圖 27 3-2. 實驗藥品及儀器設備 28 3-2-1. 實驗藥品及耗材 28 3-2-2. 儀器設備 29 3-3. 實驗步驟 30 3-3-1. 氧化鋅奈米管/奈米線結構製備實驗步驟 30 3-3-2. 修飾金屬鈀於氧化鋅奈米管/奈米線結構之實驗步驟 31 3-3-3. 玫瑰紅B染料光催化降解實驗 32 第四章 結果與討論 33 4-1. 氧化鋅奈米管/奈米線結構製備條件優化 33 4-1-1. 電解質濃度 33 4-1-2. 電解質pH值 36 4-1-3. 陽極氧化電壓 38 4-1-4. 陽極氧化持續時間 40 4-2. 氧化鋅奈米管/奈米線結構元素表面組成分析 42 4-2-1. 能量色散X射線圖譜分析 42 4-2-2. X射線電子能譜分析 43 4-3. 氧化鋅晶體結構分析 45 4-4. 氧化鋅紫外/可見光漫反射光譜分析 51 4-5. 修飾鈀於氧化鋅奈米管/奈米線結構材料鑑定分析 54 4-5-1. 表面形貌分析 .54 4-5-2. X射線電子能譜分析 55 4-5-3. 紫外/可見光漫反射光譜分析 58 4-6. 光催化降解玫瑰紅B染料效能分析 60 4-6-1. 玫瑰紅B染料溶液初始濃度 63 4-6-2. 玫瑰紅B染料溶液初始pH值 65 4-6-3. 氧化鋅光催化劑與光源之距離 68 4-6-4. 不同結構之氧化鋅光催化劑 70 4-6-5. 氧化鋅光催化劑之穩定度 73 4-6-6. 修飾金屬鈀於氧化鋅光催化劑之光催化效能分析 74 第五章 結論 75 參考文獻 77 附錄 85

    1. Natarajan, T. S.; Thomas, M.; Natarajan, K.; Bajaj, H. C.; Tayade, R. J., Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal 2011, 169 (1), 126-134.
    2. Ceretta, M. B.; Vieira, Y.; Wolski, E. A.; Foletto, E. L.; Silvestri, S., Biological degradation coupled to photocatalysis by ZnO/polypyrrole composite for the treatment of real textile wastewater. Journal of Water Process Engineering 2020, 35, 101230.
    3. Vlyssides, A. G.; Papaioannou, D.; Loizidoy, M.; Karlis, P. K.; Zorpas, A. A., Testing an electrochemical method for treatment of textile dye wastewater. Waste Management 2000, 20 (7), 569-574.
    4. Jain, R.; Mathur, M.; Sikarwar, S.; Mittal, A., Removal of the hazardous dye rhodamine B through photocatalytic and adsorption treatments. Journal of Environmental Management 2007, 85 (4), 956-964.
    5. Farag, A. A. M.; Yahia, I. S., Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Optics Communications 2010, 283 (21), 4310-4317.
    6. 蘇孟娟 (民國 105年12月20日) 。添加工業染料黑心湯圓賣10年。自由時報。民國 109年5月15日,取自:https://news.ltn.com.tw/news/life/paper/1063577.
    7. He, Z.; Sun, C.; Yang, S.; Ding, Y.; He, H.; Wang, Z., Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. Journal of Hazardous Materials 2009, 162 (2), 1477-1486.
    8. Shen, X.; Zhang, T.; Xu, P.; Zhang, L.; Liu, J.; Chen, Z., Growth of C3N4 nanosheets on carbon-fiber cloth as flexible and macroscale filter-membrane-shaped photocatalyst for degrading the flowing wastewater. Applied Catalysis B: Environmental 2017, 219, 425-431.
    9. Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R., Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today 1999, 53 (1), 51-59.
    10. Khataee, A. R.; Fathinia, M., Chapter 11 - Recent Advances in Photocatalytic Processes by Nanomaterials. In New and Future Developments in Catalysis, Suib, S. L., Ed. Elsevier: Amsterdam, 2013, 267-288.
    11. Choi, H.; Al-Abed, S. R.; Dionysiou, D. D.; Stathatos, E.; Lianos, P., Chapter 8 TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse. In Sustainability Science and Engineering, Escobar, I. C.; Schäfer, A. I., Eds. Elsevier: 2010; Vol. 2, 229-254.
    12. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W., Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews 2014, 114 (19), 9919-9986.
    13. Zhang, Z.; Shao, C.; Li, X.; Zhang, L.; Xue, H.; Wang, C.; Liu, Y., Electrospun Nanofibers of ZnO−SnO2 Heterojunction with High Photocatalytic Activity. The Journal of Physical Chemistry C 2010, 114 (17), 7920-7925.
    14. Chakrabarti, S.; Dutta, B. K., Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. Journal of Hazardous Materials 2004, 112 (3), 269-278.
    15. Alvarez, M.; López, T.; Odriozola, J. A.; Centeno, M. A.; Domínguez, M. I.; Montes, M.; Quintana, P.; Aguilar, D. H.; González, R. D., 2,4-Dichlorophenoxyacetic acid (2,4-D) photodegradation using an Mn+/ZrO2 photocatalyst: XPS, UV–vis, XRD characterization. Applied Catalysis B: Environmental 2007, 73 (1), 34-41.
    16. Plaza, M.; Huang, X.; Ko, J. Y. P.; Shen, M.; Simpson, B. H.; Rodríguez-López, J.; Ritzert, N. L.; Letchworth-Weaver, K.; Gunceler, D.; Schlom, D. G.; Arias, T. A.; Brock, J. D.; Abruña, H. D., Structure of the Photo-catalytically Active Surface of SrTiO3. Journal of the American Chemical Society 2016, 138 (25), 7816-7819.
    17. Li, X.; Xia, T.; Xu, C.; Murowchick, J.; Chen, X., Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catalysis Today 2014, 225, 64-73.
    18. Zhou, W.; Yin, Z.; Du, Y.; Huang, X.; Zeng, Z.; Fan, Z.; Liu, H.; Wang, J.; Zhang, H., Synthesis of Few-Layer MoS2 Nanosheet-Coated TiO2 Nanobelt Heterostructures for Enhanced Photocatalytic Activities. Small 2013, 9 (1), 140-147.
    19. Mishra, M.; Chun, D.-M., α-Fe2O3 as a photocatalytic material: A review. Applied Catalysis A: General 2015, 498, 126-141.
    20. Szilágyi, I. M.; Fórizs, B.; Rosseler, O.; Szegedi, Á.; Németh, P.; Király, P.; Tárkányi, G.; Vajna, B.; Varga-Josepovits, K.; László, K.; Tóth, A. L.; Baranyai, P.; Leskelä, M., WO3 photocatalysts: Influence of structure and composition. Journal of Catalysis 2012, 294, 119-127.
    21. Hariharan, C., Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Applied Catalysis A: General 2006, 304, 55-61.
    22. Rehman, S.; Ullah, R.; Butt, A. M.; Gohar, N. D., Strategies of making TiO2 and ZnO visible light active. Journal of Hazardous Materials 2009, 170 (2), 560-569.
    23. Qi, K.; Cheng, B.; Yu, J.; Ho, W., Review on the improvement of the photocatalytic and antibacterial activities of ZnO. Journal of Alloys and Compounds 2017, 727, 792-820.
    24. Mu, J.; Shao, C.; Guo, Z.; Zhang, Z.; Zhang, M.; Zhang, P.; Chen, B.; Liu, Y., High Photocatalytic Activity of ZnO−Carbon Nanofiber Heteroarchitectures. ACS Applied Materials & Interfaces 2011, 3 (2), 590-596.
    25. Lizama, C.; Freer, J.; Baeza, J.; Mansilla, H. D., Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis Today 2002, 76 (2), 235-246.
    26. Li, Y.; Xie, W.; Hu, X.; Shen, G.; Zhou, X.; Xiang, Y.; Zhao, X.; Fang, P., Comparison of Dye Photodegradation and its Coupling with Light-to-Electricity Conversion over TiO¬2 and ZnO. Langmuir 2010, 26 (1), 591-597.
    27. Li, J.; Fan, H.; Jia, X., Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing Application. The Journal of Physical Chemistry C 2010, 114 (35), 14684-14691.
    28. Katwal, G.; Paulose, M.; Rusakova, I. A.; Martinez, J. E.; Varghese, O. K., Rapid Growth of Zinc Oxide Nanotube–Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection. Nano Letters 2016, 16 (5), 3014-3021.
    29. Dong, H.; Zhou, J.; Virtanen, S., Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications. Applied Surface Science 2019, 494, 259-265.
    30. Wu, C. C.; Wuu, D. S.; Lin, P. R.; Chen, T. N.; Horng, R. H., Three-Step Growth of Well-Aligned ZnO Nanotube Arrays by Self-Catalyzed Metalorganic Chemical Vapor Deposition Method. Crystal Growth & Design 2009, 9 (10), 4555-4561.
    31. Zhang, Y.; Liu, M.; Ren, W.; Ye, Z.-G., Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition. Applied Surface Science 2015, 340, 120-125.
    32. İpeksaç, T.; Kaya, F.; Kaya, C., Hydrothermal synthesis of Zinc oxide (ZnO) nanotubes and its electrophoretic deposition on nickel filter. Materials Letters 2013, 100, 11-14.
    33. Wu, G. S.; Xie, T.; Yuan, X. Y.; Li, Y.; Yang, L.; Xiao, Y. H.; Zhang, L. D., Controlled synthesis of ZnO nanowires or nanotubes via sol–gel template process. Solid State Communications 2005, 134 (7), 485-489.
    34. Faid, A. Y.; Allam, N. K., Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes. RSC Advances 2016, 6 (83), 80221-80225.
    35. Li, F. B.; Li, X. Z., The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere 2002, 48 (10), 1103-1111.
    36. Güy, N.; Çakar, S.; Özacar, M., Comparison of palladium/zinc oxide photocatalysts prepared by different palladium doping methods for congo red degradation. Journal of Colloid and Interface Science 2016, 466, 128-137.
    37. Saravanan, R.; Karthikeyan, N.; Gupta, V. K.; Thirumal, E.; Thangadurai, P.; Narayanan, V.; Stephen, A., ZnO/Ag nanocomposite: An efficient catalyst for degradation studies of textile effluents under visible light. Materials Science and Engineering: C 2013, 33 (4), 2235-2244.
    38. Pawinrat, P.; Mekasuwandumrong, O.; Panpranot, J., Synthesis of Au–ZnO and Pt–ZnO nanocomposites by one-step flame spray pyrolysis and its application for photocatalytic degradation of dyes. Catalysis Communications 2009, 10 (10), 1380-1385.
    39. Sangpour, P.; Hashemi, F.; Moshfegh, A. Z., Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. The Journal of Physical Chemistry C 2010, 114 (33), 13955-13961.
    40. Marotti, R. E.; Giorgi, P.; Machado, G.; Dalchiele, E. A., Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Solar Energy Materials and Solar Cells 2006, 90 (15), 2356-2361.
    41. Chichvarina, O.; Herng, T. S.; Phuah, K. C.; Xiao, W.; Bao, N.; Feng, Y. P.; Ding, J., Stable zinc-blende ZnO thin films: formation and physical properties. Journal of Materials Science 2015, 50 (1), 28-33.
    42. Recio, J. M.; Blanco, M. A.; Luaña, V.; Pandey, R.; Gerward, L.; Staun Olsen, J., Compressibility of the high-pressure rocksalt phase of ZnO. Physical Review B 1998, 58 (14), 8949-8954.
    43. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98 (4), 041301.
    44. Allen J. Bard, L. R. F., Electrochemical Methods: Fundamentals and Applications. 2nd ed.; John Wiley & Sons, Inc: 2000.
    45. Masuda, H.; Fukuda, K., Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science 1995, 268 (5216), 1466.
    46. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells 2006, 90 (14), 2011-2075.
    47. Tsuchiya, H.; Macak, J. M.; Sieber, I.; Schmuki, P., Self-Organized High-Aspect-Ratio Nanoporous Zirconium Oxides Prepared by Electrochemical Anodization. Small 2005, 1 (7), 722-725.
    48. Sieber, I.; Hildebrand, H.; Friedrich, A.; Schmuki, P., Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications 2005, 7 (1), 97-100.
    49. Tsuchiya, H.; Schmuki, P., Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochemistry Communications 2005, 7 (1), 49-52.
    50. Allam, N. K.; Feng, X. J.; Grimes, C. A., Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials 2008, 20 (20), 6477-6481.
    51. Miles, D. O.; Cameron, P. J.; Mattia, D., Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. Journal of Materials Chemistry A 2015, 3 (34), 17569-17577.
    52. Kim, S. J.; Choi, J., Self-assembled arrays of ZnO stripes by anodization. Electrochemistry Communications 2008, 10 (1), 175-179.
    53. He, S.; Zheng, M.; Yao, L.; Yuan, X.; Li, M.; Ma, L.; Shen, W., Preparation and properties of ZnO nanostructures by electrochemical anodization method. Applied Surface Science 2010, 256 (8), 2557-2562.
    54. Zhao, J.; Wang, X.; Liu, J.; Meng, Y.; Xu, X.; Tang, C., Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method. Materials Chemistry and Physics 2011, 126 (3), 555-559.
    55. Goh, H. S.; Adnan, R.; Farrukh, M. A., ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange. Turkish Journal of Chemistry 2011, 35 (3), 375-391.
    56. Dong, J.; Liu, Z.; Dong, J.; Ariyanti, D.; Niu, Z.; Huang, S.; Zhang, W.; Gao, W., Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Advances 2016, 6 (77), 72968-72974.
    57. Huang, G. S.; Wu, X. L.; Cheng, Y. C.; Shen, J. C.; Huang, A. P.; Chu, P. K., Fabrication and characterization of anodic ZnO nanoparticles. Applied Physics A 2007, 86 (4), 463-467.
    58. Hu, Z.; Chen, Q.; Li, Z.; Yu, Y.; Peng, L.-M., Large-Scale and Rapid Synthesis of Ultralong ZnO Nanowire Films via Anodization. The Journal of Physical Chemistry C 2010, 114 (2), 881-889.
    59. Park, J.; Kim, K.; Choi, J., Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization. Current Applied Physics 2013, 13 (7), 1370-1375.
    60. Pan, Y.-W.; Ren, S.-T.; Qu, S.-L.; Wang, Q., Physical model for the exotic ultraviolet photo-conductivity of ZnO nanowire films. Chinese Physics B 2013, 22 (11), 118102.
    61. Verhoeven, J. D., Fundamentals of physical metallurgy. Wiley: New York, 1975.
    62. Bott, A., Electrochemistry of semiconductors. Current separations 1998, 17, 87.
    63. Paul Kubelka, F. M., An Article on Optics of Paint Layers. Fuer Tekn. Physik 1931, 12, 593-609.
    64. Jarosiński, Ł.; Pawlak, J.; Al-Ani, S. K. J., Inverse logarithmic derivative method for determining the energy gap and the type of electron transitions as an alternative to the Tauc method. Optical Materials 2019, 88, 667-673.
    65. A. Escobedo Morales, E. S. M.; U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista mexicana de física 2007, 53 (5), 18.
    66. Rahman, Q. I.; Ahmad, M.; Misra, S. K.; Lohani, M., Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Materials Letters 2013, 91, 170-174.
    67. Yu, C.; Yang, K.; Zhou, W.; Fan, Q.; Wei, L.; Yu, J. C., Preparation, characterization and photocatalytic performance of noble metals (Ag, Pd, Pt, Rh) deposited on sponge-like ZnO microcuboids. Journal of Physics and Chemistry of Solids 2013, 74 (12), 1714-1720.
    68. Li, J.; Ishihara, T.; Yoshizawa, K., Theoretical Revisit of the Direct Synthesis of H2O2 on Pd and Au@Pd Surfaces: A Comprehensive Mechanistic Study. The Journal of Physical Chemistry C 2011, 115 (51), 25359-25367.
    69. Jin, Y.; Xi, J.; Zhang, Z.; Xiao, J.; Xiao, F.; Qian, L.; Wang, S., An ultra-low Pd loading nanocatalyst with efficient catalytic activity. Nanoscale 2015, 7 (12), 5510-5515.
    70. Chang, Y.; Xu, J.; Zhang, Y.; Ma, S.; Xin, L.; Zhu, L.; Xu, C., Optical Properties and Photocatalytic Performances of Pd Modified ZnO Samples. The Journal of Physical Chemistry C 2009, 113 (43), 18761-18767.
    71. Kosmulski, M., A literature survey of the differences between the reported isoelectric points and their discussion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 222 (1), 113-118.
    72. Lops, C.; Ancona, A.; Di Cesare, K.; Dumontel, B.; Garino, N.; Canavese, G.; Hérnandez, S.; Cauda, V., Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Applied Catalysis B: Environmental 2019, 243, 629-640.
    73. Wu, T.; Liu, G.; Zhao, J.; Hidaka, H.; Serpone, N., Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions. The Journal of Physical Chemistry B 1998, 102 (30), 5845-5851.
    74. Zhang, Y.; Zhou, J.; Cai, W.; Zhou, J.; Li, Z., Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Applied Surface Science 2018, 430, 549-560.
    75. Yu, K.; Yang, S.; He, H.; Sun, C.; Gu, C.; Ju, Y., Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism. The Journal of Physical Chemistry A 2009, 113 (37), 10024-10032.
    76. Swinehart, D. F., The Beer-Lambert Law. Journal of Chemical Education 1962, 39 (7), 333.
    77. Kumar, K. V.; Porkodi, K.; Rocha, F., Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications 2008, 9 (1), 82-84.
    78. Alvi, M. A.; Al-Ghamdi, A. A.; ShaheerAkhtar, M., Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Materials Letters 2017, 204, 12-15.
    79. Abd Mutalib, M.; Rahman, M. A.; Othman, M. H. D.; Ismail, A. F.; Jaafar, J., Chapter 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. In Membrane Characterization, Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Radcliffe, D., Eds. Elsevier: 2017, 161-179.
    80. Gilmore, J. C. V. I. S., Surface Analysis – The Principal Techniques. 2nd ed.; John Wiley & Sons, Ltd: 2009.
    81. Epp, J., 4 - X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Hübschen, G.; Altpeter, I.; Tschuncky, R.; Herrmann, H.-G., Eds. Woodhead Publishing: 2016, 81-124.
    82. Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells 2003, 77 (1), 65-82.
    83. Schön, G., Auger and direct electron spectra in X-ray photoelectron studies of zinc, zinc oxide, gallium and gallium oxide. Journal of Electron Spectroscopy and Related Phenomena 1973, 2 (1), 75-86.

    無法下載圖示 校內:2025-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE