| 研究生: |
朱遠志 Chu, Yuan-Chih |
|---|---|
| 論文名稱: |
以螯合功能性高分子模板製備奈米微粒之研究 Study on the preparation of nanoparticles by using the polymer templates |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 磁滯曲線 、摻雜 、光致發光性質 、奈米複合材料 、硫化鎘奈米粒子 、高分子基板 、螯合功能性高分子 |
| 外文關鍵詞: | nanocomposite, CdS nanoparticles, polymer template, luminescent, chelating groups |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文係以螯合功能性高分子模板作為製備奈米微粒的成長基板,其中高分子模板是以無乳化劑乳化共聚合法(emulsion-free polymerization)製備得到高分子乳液基板以及將乳液成膜得到高分子薄膜基板兩種。其特徵在於高分子基板表面具有強螯合金屬離子官能基,高分子基板螯合金屬離子之後可用二次水清洗多餘未螯合的金屬離子,並以化學電鍍還原法、紫外光照射還原法、及氣相、液相沈積法製備硫化鎘、銀、及鎳等奈米粒子於高分子基板上。
本研究以亞胺乙二酸(IDA)和縮水甘油甲基丙烯酸酯(GMA)反應得到側鏈具螯合官能基的乙烯系單體,簡稱為GMA-IDA。將SM及GMA-IDA單體進行無乳化劑乳化共聚合反應製備粒徑約為100nm之高分子乳液基板poly(St-co-GMA-IDA),簡稱PSG-I。以PSG-I基板螯合Cd+2離子後通入H2S氣體製備PSG-I-CdS奈米複合微粒並探討奈米粒子於基板表面的粒徑對發光性質的影響。本文探討GMA-IDA於乳液顆粒表面的濃度、Cd+2離子螯合量及環境pH值對奈米粒子成長的影響,進而發現乳液顆粒表面具有較厚的GMA-IDA殼層、較低的Cd+2離子螯合量,以及較低的pH值環境下可得到較高的量子發光效率,其中以PSG-I1(A)基板螯合[Cd+2]/[GMA-IDA]=1/6,pH=3.5下,反應80min時可達最高量子發光效率7.4%。本研究亦製備poly(St-co-AA) (PSAA)、poly(St-co-AN) (PSAN)、poly(MA-co-GMA-IDA) (PMG-I)以及以羥胺(NH2OH)化學改質poly(St-co-AN)乳液得到具有含西夫鹼(Schiff base)螯合基之poly(St-co-Acryloamidoxime) (PSAAm)乳液基板,將上述四組乳液基板製備CdS奈米複合顆粒發現以PSAAm基板可得到3.1%量子發光效率為最高,其次為PMG-I為2.6%,其他乳液基板的量子發光效率皆偏低,約小於1%。此外本文亦成功製備鎳及銀的奈米複合顆粒。
另一方面本研究以GMA-IDA與丙烯酸正丁酯(BA)及縮水甘油甲基丙烯酸酯(GMA)進行無乳化劑乳化共聚合反應製備得到Poly(BA-co-GMA-co-GMA-IDA) (PBGG-I)高分子乳液,再將乳液成膜製得高分子PBGG-I薄膜基板。PBGG-I薄膜螯合Cd+2離子後,以二次水清洗薄膜上未螯合金屬離子,分別以液相法(Na2S)及氣相法(H2S)製備得到PBGG-I-CdS奈米複合薄膜材料。由TEM及UV/Vis光譜可觀察到以液相法製備之CdS奈米晶體於薄膜內部的粒徑為3nm~6nm;另以氣相法製備的CdS奈米晶體則為1nm~3nm。進一步地,利用SEM及AFM觀察薄膜基材表面,觀察到以液相法製備之CdS奈米粒子粒徑分佈為20~30nm,氣相法則除了可觀察到粒徑5nm的奈米粒子外還發現形成直徑約為50~100nm,長200~400nm的CdS棒狀晶體。將PBGG-I-CdS薄膜進行PL發光光譜分析發現以氣相法製備之奈米複合薄膜為發黃綠光的可見光波段,液相法則是橘紅光的波段。此外以摻雜Zn+2離子於PBGG-I-CdS薄膜,可達到提高發光強度的效果,其中氣相法摻雜1.5%;液相法摻雜3.0%的Zn+2離子可達到最高發光強度。本研究亦利用改變高分子組成製備出不同粒徑之PBGG-I-Ni奈米複合薄膜,並進行磁性分析。由SQUID的磁滯曲線結果發現,粒徑1~6nm鎳奈米粒子具有超順磁性,當粒徑達20nm~100nm時,則具有約160Oe的高矯頑磁力及40erg/g的高飽和磁化強度的特性。
A simple synthetic route for the preparation of luminescent and magnetic nanocomposite materials is disclosed. The method comprises providing chelating group-containing polymer templates, and producing nanoparticles on the surface of said polymer template. Various kinds of nanoparticles can be synthesized on polymer templates with electroless plating, ultraviolet irradiation, gas phase and liquid phase chemical precipitation methods. This approach is suitable not only for the preparation of semiconductor nanoparticles but also other nanoparticles, especially those that can be prepared from the reduction of an appropriate metal ion-polymer complex.
The PSG-I latex was prepared by the soap-free emulsion copolymerization of styrene and GMA-IDA. The PSG-I microsphere templates were be used to chelating metal ions, at which CdS particles were grown. The growth kinetic of CdS nanoparticles was studied by TEM and photoluminescence spectra (PL). The size and morphology of CdS particles were influenced by the amount of iminodiacetic acid group on the surface of the copolymer microspheres, the pH value, and the chelating amount of Cd+2 ions. The PSG-I1(A)-CdS sample with [Cd+2]/[GMA-IDA]=1/6, pH=3.5, which can prepared the ultrafine CdS nanoparticles with mean diameters of below 5nm immobilized on the surface of copolymer microspheres, emitted photons with a maximum photoluminescence quantum yield (7.4%) than other samples in this investigation. Other microsphere templates, such as poly(St-co-AA)、poly(St-co-MAA)、poly(St-co-AN)、poly(St-co-AAm) and poly(MA-co-GMA-IDA) were also be prepared for synthesizing nanocomposites and compared the luminescence properties with PSGG-I-CdS in this study.
The polymer templates PBGG-I films were prepared by soap-free emulsion copolymerization of BA, GMA and GMA-IDA. GMA-IDA chelating groups within the copolymer were the coordination sites for chelating Cd+2, at which nanosized CdS nanocrystals were grown by the dry method (H2S) and the wet method (Na2S). The particle size and morphology of CdS nanocrystals were observed by TEM, SEM and AFM. TEM observations demonstrate that the mean diameters of CdS nanoparticles can be prepared between 1~3nm inside the matrix of PBGG-I films by the dry method and between 3~6nm by the wet method. AFM images reveal that CdS nanocrystals on the surfaces of PBGG-I films formed by the dry method have rod-like morphology. Both the PBGG-I-CdS prepared by gas and liquid method appears a good luminescent property and the luminescent property can be promoted by dopping Zn+2 ions. In addition, the magnetism material, PBGG-I-Ni, also be synthesized with the particle sizes of nickel are 1~6nm and 20~100nm. The hysteresis curves measured by SQUID reveal that particle sizes in 1~6nm have superparamagnetism phenomenon and 20~100nm have high coercive force and saturated magnetization.
1.Y. Konodo, K. Takayanag, Science, 289, 606, 2000
2.W. Fritzsche, K. J. Bohm, E. Unger, J. M. Kohler, Appl. Phys. Lett., 75, 2845, 1999
3.S. Ijima, Nature, 345, 56, 1991
4.M. H. Dvoret, D. Esteve, C. Urbina, Nature, 360, 547, 1992
5.A. P. Alivisatos, Science, 271, 933, 1996
6.R. C. Ashoori, Nature, 379, 413, 1996
7.A. M. Morales, C. M. Lieber, Science, 279, 208, 1998
8.H. Tanaka, M. Mitsuishi, T. Miyashita, Langmuir, 19, 3103, 2003
9.T. Miyashita, Prog. Polym. Sci., 18, 263, 1993
10.T. Taniguchi, Y. Yokoyama, T. Miyashita, Macromolecules, 30, 3646, 1997
11.Y. H. Cho, G. Cho, J. S. Lee, Adv. Mater., 16, 1814, 2004
12.K. Ishizu, Prog. Polym. Sci., 23, 1383, 1998
13.S. Forster, M. Antonietti, Adv. Mater., 10, 195, 1998
14.Y. H. Cho, J. E. Yang, J. S. Lee, Mater. Sci. Eng. C, 24, 293, 2004
15.M. G. Berger, R. A. Fischer, M. Thoenissen, M. Krueger, S. Billat, H. Lueth, S. Hilbrich, W. Theiss, P. Grosse, Thin Solid Films, 297, 237, 1997
16.M. S. Yoon, K. H. Ahn, R. W. Cheung, H. Sohn, J. R. Link, F. Cunin, M. J. Sailor, Chem. Commum., 680, 2003
17.F. Caruso, R. A. Caruso, H. Mohwald, Science, 282, 1111, 1998
18.F. Tang, H. Fudouzi, J. Zhang, Y. Sakka, Scr. Mat., 49, 735, 2003
19.Y. B. Zhang, H. F. Shao, X. F. Qian, J. Yin, Z. K. Zhu, J. Solid State Chem., 177, 3675, 2004
20.Y. Chen, E. T. Kang, K. G. Neoh, A. Greiner, Adv. Funct. Mater., 15, 113, 2005
21.C. Schonenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B, 101, 5497, 1997
22.C. Schonenberger, B. M. I. van der Zande, L. G. J. Fokkink, Mater. Res. Soc. Symp. Proc., 451, 359, 1997
23.N. I. Kovtyukhova, B. R. Matin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi, T. S. Mayer, Mater. Sci. Eng. C, 19, 255, 2002
24.C. R. Martin, Science, 266, 196, 1994
25.C. J. Brumlik, V. P. Menon, C. R. Martin, J. Mater. Res., 9, 1174, 1994
26.G. E. Possin, Rev. Sci. Instrum., 41, 772, 1970
27.W. D. Williams, N. Giordano, Rev. Sci., Instrum., 55, 410, 1984
28.R. M. Penner, C. R. Martin, J. Electrochem. Soc., 133, 2206, 1986
29.R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature, 337, 147, 1989
30.R. J. Tonucci, B. L. Justus, A. J. Ca,pillo, C. E. Ford. Science, 258, 783, 1992
31.C. G. Wu, B. Thomas, Science, 264, 1757, 1994
32.M. Zhang, M. Drechsler, A. H. E. Muller, Chem. Mater., 16, 537, 2004
33.R. Djalali, S. Y. Li, M. Schmidt, Macromolecules, 35, 4282, 2002
34.A. W. Fahmi, H. G. Braun, M. Stamm, Adv. Mater., 15, 1201, 2003
35.S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc., 124, 10192, 2002
36.S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc., 124, 3218, 2002
37.G. Kickelbick, Prog. Polym. Sci., 28, 83, 2003
38.C. Parka, J. Yoonb, E. L. Thomas, Polymer, 44, 6725, 2003
39.T. Liua, C. Burgerb, B. Chub, Prog. Polym. Sci., 28, 5, 2003
40.J. Zhang, S. Xu, E. Kumacheva, J. Am. Chem. Soc., 126, 7908, 2004
41.E. Kroll, F. M. Winnik, R. F. Ziolo, Chem. Mater., 8, 1594, 1996
42.S. Xu, J. Zhang, C. Paquet, Y. Lin, E. Kumacheva, Adv. Funct. Mater., 13, 468, 2003
43.S. Xu, J. Zhang, E. Kumacheva, Compos. Interfaces, 10, 405, 2003
44.M. Antonietti, F. Grohn, H. Hartmann, L. Bronstein, Angew. Chem. Int. Ed. Engl., 36, 2080, 1997
45.M. Breulmann, H. Colfen, H. P. Hentze, M. Antonietti, D. Walsh, S. Mann, Adv. Mater., 10, 237, 1998
46.R. C. Hedden, B. J. Bauer, A. P. Smith, F. Grohn, E. Amis, Polymer, 43, 5473, 2002
47.R. M. Crooks, B. I. Lemon, L. Sun, L. K. Yeung, M. Q. Zhao, Top. Curr. Chem., 212, 81, 2001
48.M. Q. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 120, 4877-8, 1998
49.L. Balogh, D. A. Tomalia, J. Am. Chem. Soc., 120, 7355-6, 1998
50.M. F. Ottaviani, F. Montalti, N. J. Turro, D. A. Tomalia, J. Phys. Chem. B, 101, 158, 1997
51.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 2963, 1989
52.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 2995, 1989
53.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 3015, 1989
54.H. Tamai, S. Hamamoto, Y. Hirota, F. Nishiyama, H. Yasuda, J. Colloid Interface Sci., 171, 25, 1995
55.H. Tamai, H. Sakarai, Y. Hirota, F. Nishiyama, H. Yasuda, J. Appl. Polym. Sci., 56, 441, 1995
56.H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, J. Mater. Sci., 35, 4945, 2000
57.P. H. Wang, C. Y. Pan, 279, 171, 2001
58.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 278, 581, 2000
59.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 278, 245, 2000
60.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 280, 152, 2000
61.P. H. Wang, C. Y. Pan, Eur. Polym. J., 36, 2297, 2000
62.P. H. Wang, C. Y. Pan, J. Appl. Polym. Sci., 75, 1693, 2000
63.P. H. Wang, Y. Z. Wu, Q. R. Zhu, J. Mater. Sci. Lett., 21, 1825, 2002
64.P. H. Wang, J. Appl. Polym. Sci., 88, 936, 2003
65.A. B. R. Mayer, W. Grebner, R. Wannemacher, J. Phys. Chem. B, 104, 7278, 2000
66.B. Cheng, Y. R. Zhu, W. Q. Jiang, C. Y. Wang, Z. Y. Chen, J. Chem. Research (s), 506, 1999
67.A. Dokoutchaev, J. T. James, S. C. Koene, S. Pathak, Chem. Mater., 11, 2389, 1999
68.D. Wu, X. Ge, Y. Huang, Z. Zhang, Q. Ye, Mater. Lett., 57, 3548, 2003
69.A. S. Susha, F. Caruso, A. L. Rogach, G. B. Sukhorukov, A. Kornowski, H. Mohwald, M. Giersig, A. Eychmuller, H. Weller, Colloids surf., 163, 39, 2000
70.F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes”, Berlin Springer, 1996
71.S. H. Choi, Y. C. Nho, Radiation Phys. Chem., 57, 187, 2000
72.B. W. Zhang, K. Fischer, D. Bieniek, A. Kettrup, React. Polym., 24, 49, 1994
73.X. Chang, X. Yang, X. Wei, K. Wu, Anal. Chim. Acta., 450 , 231, 2001
74.B. Gong, Talanta, 57, 89, 2002
75.C. Xijun, L. Yanfeng, Z. Guangyao, L. Xingyin, G. Wenyun, Talanta, 43, 407, 1996
76.W. Lee, T. Oshikiri, K. Saito, K. Sugita, T. Sugo, Chem. Mater., 8, 2618, 1996
77.T. Kawai, K. Saito, K. Sugita, A. Katakai, N. Seko, T. Sugo, J. Kanno, T. Kawakami, Ind. Eng. Chem. Res., 39, 2910, 2000
78.C. C. Wang, C. C. Chang, C. Y. Chen, Macromol. Chem. Phys., 202, 882, 2001
79.C. C. Wang, C. Y. Chen, J. Appl. Polym. Sci., 84, 1353, 2002
80.C. C. Wang, C. Y. Chen, C. C. Huang, C. Y. Chen, J. Membr. Sci., 208, 133, 2002
81.C. C. Wang, W. S. Li, C. Y. Cheng, C. Y. Chen, J. Appl. Polym. Sci., 82, 3248, 2001
82.C. C. Wang, H. G. Chen, H. B. Hsieh, C. Y. Chen, Polym. Adv. Technol., 14, 349, 2003
83.W. H. Hou, C. Y. Chen, C. C. Wang, Polymer, 44, 2983, 2003
84.W. H. Hou, C. Y. Chen, C. C. Wang, Y. H. Huang, Electrochim. Acta, 48, 679, 2003
85.W. H. Hou, C. Y. Chen, C. C. Wang, Conductivity , Solid State Ion., 166, 397, 2004
86.W. H. Hou, C. Y. Chen, C. C. Wang, Electrochim. Acta, 49, 2105, 2004
87.陳志彥, 具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及應用, 國立成功大學博士論文, 民國九十一學年度
88.W. Klöpffer, Eur. Polym. J., 11, 203, 1975
89.F. Wu, J. Z. Zhang, R. Kho, R. K. Mehra, Chem. Phys. Lett., 330, 237, 2000
90.W. R. Dawson, M, W. Windsor, J. Phys. Chem., 72, 3251, 1968
91.C. W. Wang, M. G. Moffitt, Langmuir, 20, 11784, 2004
92.C. Kittel, Phys. Rev., 70, 965, 1946
93.D. L. L. Pelecky, R. D. Rieke, Chem. Mater., 8, 1770, 1996
94.B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Company Inc., 1978
95.J. Nanda, B. A. Kuruvilla, D. D. Sarma, Phys Rev.B., 59.7473, 1999
96.L. Spanhel, M. Haase, H. Weller, A. Henglein, J . Am. Chem. SOC., 109, 5649, 1987
97.A. Henglein, Chsm. Rev., 89, 1861, 1989
98.J. U. Kim, B. O’Shaughnessy, Phys. Rev. Lett., 89, 238301-1, 2002
99.A. N. Semenov, Sov. Phys. JETP, 61, 733, 1985
100.D. R. M. Williams and P. A. Pincus, , Europhys. Lett., 24, 29, 1993
101.H. Lamb, Hydrodynamics, Dover Publications, New York, 1945
102.Z. X. Deng, L. Li, Y. Li, Inorg. Chem., 42, 2331, 2003
103.G. Cunio, T. Gacoin, J. P. Boilot, J. Phys. Chem. B, 102, 5257, 1998
104.N. Feltin, L. Levy, D. Ingert, M. P. Pileni, J. Phys. Chem. B, 103, 4, 1999
105.D. J. Norris, N. Yao, F. T. Charnock, T. A. Kennedy, Nano Lett., 1, 3, 2001
106.K. M. Hanif, R. W. Meulenberg, G. F. Strouse, J. Am. Chem. Soc., 124, 11495, 2002
107.W. Chen, J. O. Malm, V. Zwiller, R. Wallenberg, J. O. Bovin, J. Appl. Phys., 89, 2671, 2001
108.A. A. Khosravi, M. Kundu, B . A. Kuruvilla, G. S. Shekhawat, R. P. Gupta, A. K. Sharma, P. D. Vyas, S. K. Kulkarni, Appl. Phys. Lett., 67, 2506, 1995
109.A. K. Bhattacharjee, J. P. Conde, Phys. Rev. B, 68, 045303, 2003
110.D. E. Moore, K. Patel, Langmuir, 17, 2541, 2001
111.S. Kuboniwa, H. Kawa, T. Hoshina, Jpn. J. Appl. Phys., 19, 1647, 1980