簡易檢索 / 詳目顯示

研究生: 朱遠志
Chu, Yuan-Chih
論文名稱: 以螯合功能性高分子模板製備奈米微粒之研究
Study on the preparation of nanoparticles by using the polymer templates
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 106
中文關鍵詞: 磁滯曲線摻雜光致發光性質奈米複合材料硫化鎘奈米粒子高分子基板螯合功能性高分子
外文關鍵詞: nanocomposite, CdS nanoparticles, polymer template, luminescent, chelating groups
相關次數: 點閱:123下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文係以螯合功能性高分子模板作為製備奈米微粒的成長基板,其中高分子模板是以無乳化劑乳化共聚合法(emulsion-free polymerization)製備得到高分子乳液基板以及將乳液成膜得到高分子薄膜基板兩種。其特徵在於高分子基板表面具有強螯合金屬離子官能基,高分子基板螯合金屬離子之後可用二次水清洗多餘未螯合的金屬離子,並以化學電鍍還原法、紫外光照射還原法、及氣相、液相沈積法製備硫化鎘、銀、及鎳等奈米粒子於高分子基板上。

      本研究以亞胺乙二酸(IDA)和縮水甘油甲基丙烯酸酯(GMA)反應得到側鏈具螯合官能基的乙烯系單體,簡稱為GMA-IDA。將SM及GMA-IDA單體進行無乳化劑乳化共聚合反應製備粒徑約為100nm之高分子乳液基板poly(St-co-GMA-IDA),簡稱PSG-I。以PSG-I基板螯合Cd+2離子後通入H2S氣體製備PSG-I-CdS奈米複合微粒並探討奈米粒子於基板表面的粒徑對發光性質的影響。本文探討GMA-IDA於乳液顆粒表面的濃度、Cd+2離子螯合量及環境pH值對奈米粒子成長的影響,進而發現乳液顆粒表面具有較厚的GMA-IDA殼層、較低的Cd+2離子螯合量,以及較低的pH值環境下可得到較高的量子發光效率,其中以PSG-I1(A)基板螯合[Cd+2]/[GMA-IDA]=1/6,pH=3.5下,反應80min時可達最高量子發光效率7.4%。本研究亦製備poly(St-co-AA) (PSAA)、poly(St-co-AN) (PSAN)、poly(MA-co-GMA-IDA) (PMG-I)以及以羥胺(NH2OH)化學改質poly(St-co-AN)乳液得到具有含西夫鹼(Schiff base)螯合基之poly(St-co-Acryloamidoxime) (PSAAm)乳液基板,將上述四組乳液基板製備CdS奈米複合顆粒發現以PSAAm基板可得到3.1%量子發光效率為最高,其次為PMG-I為2.6%,其他乳液基板的量子發光效率皆偏低,約小於1%。此外本文亦成功製備鎳及銀的奈米複合顆粒。

      另一方面本研究以GMA-IDA與丙烯酸正丁酯(BA)及縮水甘油甲基丙烯酸酯(GMA)進行無乳化劑乳化共聚合反應製備得到Poly(BA-co-GMA-co-GMA-IDA) (PBGG-I)高分子乳液,再將乳液成膜製得高分子PBGG-I薄膜基板。PBGG-I薄膜螯合Cd+2離子後,以二次水清洗薄膜上未螯合金屬離子,分別以液相法(Na2S)及氣相法(H2S)製備得到PBGG-I-CdS奈米複合薄膜材料。由TEM及UV/Vis光譜可觀察到以液相法製備之CdS奈米晶體於薄膜內部的粒徑為3nm~6nm;另以氣相法製備的CdS奈米晶體則為1nm~3nm。進一步地,利用SEM及AFM觀察薄膜基材表面,觀察到以液相法製備之CdS奈米粒子粒徑分佈為20~30nm,氣相法則除了可觀察到粒徑5nm的奈米粒子外還發現形成直徑約為50~100nm,長200~400nm的CdS棒狀晶體。將PBGG-I-CdS薄膜進行PL發光光譜分析發現以氣相法製備之奈米複合薄膜為發黃綠光的可見光波段,液相法則是橘紅光的波段。此外以摻雜Zn+2離子於PBGG-I-CdS薄膜,可達到提高發光強度的效果,其中氣相法摻雜1.5%;液相法摻雜3.0%的Zn+2離子可達到最高發光強度。本研究亦利用改變高分子組成製備出不同粒徑之PBGG-I-Ni奈米複合薄膜,並進行磁性分析。由SQUID的磁滯曲線結果發現,粒徑1~6nm鎳奈米粒子具有超順磁性,當粒徑達20nm~100nm時,則具有約160Oe的高矯頑磁力及40erg/g的高飽和磁化強度的特性。

     A simple synthetic route for the preparation of luminescent and magnetic nanocomposite materials is disclosed. The method comprises providing chelating group-containing polymer templates, and producing nanoparticles on the surface of said polymer template. Various kinds of nanoparticles can be synthesized on polymer templates with electroless plating, ultraviolet irradiation, gas phase and liquid phase chemical precipitation methods. This approach is suitable not only for the preparation of semiconductor nanoparticles but also other nanoparticles, especially those that can be prepared from the reduction of an appropriate metal ion-polymer complex.

     The PSG-I latex was prepared by the soap-free emulsion copolymerization of styrene and GMA-IDA. The PSG-I microsphere templates were be used to chelating metal ions, at which CdS particles were grown. The growth kinetic of CdS nanoparticles was studied by TEM and photoluminescence spectra (PL). The size and morphology of CdS particles were influenced by the amount of iminodiacetic acid group on the surface of the copolymer microspheres, the pH value, and the chelating amount of Cd+2 ions. The PSG-I1(A)-CdS sample with [Cd+2]/[GMA-IDA]=1/6, pH=3.5, which can prepared the ultrafine CdS nanoparticles with mean diameters of below 5nm immobilized on the surface of copolymer microspheres, emitted photons with a maximum photoluminescence quantum yield (7.4%) than other samples in this investigation. Other microsphere templates, such as poly(St-co-AA)、poly(St-co-MAA)、poly(St-co-AN)、poly(St-co-AAm) and poly(MA-co-GMA-IDA) were also be prepared for synthesizing nanocomposites and compared the luminescence properties with PSGG-I-CdS in this study.

     The polymer templates PBGG-I films were prepared by soap-free emulsion copolymerization of BA, GMA and GMA-IDA. GMA-IDA chelating groups within the copolymer were the coordination sites for chelating Cd+2, at which nanosized CdS nanocrystals were grown by the dry method (H2S) and the wet method (Na2S). The particle size and morphology of CdS nanocrystals were observed by TEM, SEM and AFM. TEM observations demonstrate that the mean diameters of CdS nanoparticles can be prepared between 1~3nm inside the matrix of PBGG-I films by the dry method and between 3~6nm by the wet method. AFM images reveal that CdS nanocrystals on the surfaces of PBGG-I films formed by the dry method have rod-like morphology. Both the PBGG-I-CdS prepared by gas and liquid method appears a good luminescent property and the luminescent property can be promoted by dopping Zn+2 ions. In addition, the magnetism material, PBGG-I-Ni, also be synthesized with the particle sizes of nickel are 1~6nm and 20~100nm. The hysteresis curves measured by SQUID reveal that particle sizes in 1~6nm have superparamagnetism phenomenon and 20~100nm have high coercive force and saturated magnetization.

    中文摘要 I 英文摘要 III 致謝 Ⅴ 目錄 Ⅶ 表目錄 Ⅹ 圖目錄 ⅩI 第一章 緒 論 1 第二章 文獻回顧 4 2-1 以高分子模板製備奈米材料之技術 4 2-1-1二維奈米材料的製備 4 2-1-2一維奈米材料的製備 5 2-1-3零維奈米材料的製備 7 2-2 螯合性高分子模板的製備方法 9 2-3 研究動機 12 第三章 實驗部分 13 3-1 藥 品 13 3-2 儀器設備 14 3-3 實驗步驟 16 3-3-1 GMA-IDA單體的合成 16 3-3-2高分子乳液基板製備 17 3-3-3高分子薄膜基板製備 17 3-3-4奈米粒子製備 18 3-4 分析方法 19 3-4-1高分子基材之成分分析 19 3-4-2高分子奈米複合材料性質分析 20 第四章 以高分子乳液作為奈米粒子的成長基板 21 4-1 PSG-I基板 21 4-1-1 PSG-I的EA、XPS鑑定 21 4-1-2 PSG-I的TEM觀察 22 4-1-1 PSG-I的FTIR鑑定 23 4-2 PSG-I-CdS奈米複合顆粒 23 4-2-1 PSG-I-CdS的成分鑑定 23 4-2-2 PSG-I3-CdS的PL及TEM觀察 24 4-2-3 GMA-IDA在PSG-I表面濃度的影響 26 4-2-4 Cd+2離子螯合量的影響 28 4-2-5 pH的影響 30 4-3 製備PSAA-CdS、PSAN-CdS、PSAAm-CdS和PMAG-I-CdS 31 4-4 製備PSG-I1(A)-Ag、Ni奈米複合顆粒 33 第五章 以高分子薄膜作為奈米粒子的成長基板 36 5-1 PBGG-I基板 36 5-1-1 PBGG-I的EA、XPS及接觸角鑑定 36 5-1-2 PBGG-I的IR鑑定 37 5-1-3 PBGG-I的DSC及TGA鑑定 39 5-2-4 GMA-IDA於薄膜內部的分佈 40 5-1-5 PBGG-I薄膜螯合吸附曲線 40 5-2 PBGG-I-CdS奈米複合薄膜 41 5-2-1液相法製備CdS奈米粒子 41 5-2-2氣相法製備CdS奈米粒子 43 5-2-3摻雜Zn+2增加PBGG-I-CdS的發光亮度 47 5-3 製備PBGG-I-Ag、Ni奈米複合薄膜 48 5-3-1製備PBGG-I3-Ni 48 5-3-2製備PBGG-I3-Ag 48 第六章 結論 51 參考文獻 53 著 作 106

    1.Y. Konodo, K. Takayanag, Science, 289, 606, 2000
    2.W. Fritzsche, K. J. Bohm, E. Unger, J. M. Kohler, Appl. Phys. Lett., 75, 2845, 1999
    3.S. Ijima, Nature, 345, 56, 1991
    4.M. H. Dvoret, D. Esteve, C. Urbina, Nature, 360, 547, 1992
    5.A. P. Alivisatos, Science, 271, 933, 1996
    6.R. C. Ashoori, Nature, 379, 413, 1996
    7.A. M. Morales, C. M. Lieber, Science, 279, 208, 1998
    8.H. Tanaka, M. Mitsuishi, T. Miyashita, Langmuir, 19, 3103, 2003
    9.T. Miyashita, Prog. Polym. Sci., 18, 263, 1993
    10.T. Taniguchi, Y. Yokoyama, T. Miyashita, Macromolecules, 30, 3646, 1997
    11.Y. H. Cho, G. Cho, J. S. Lee, Adv. Mater., 16, 1814, 2004
    12.K. Ishizu, Prog. Polym. Sci., 23, 1383, 1998
    13.S. Forster, M. Antonietti, Adv. Mater., 10, 195, 1998
    14.Y. H. Cho, J. E. Yang, J. S. Lee, Mater. Sci. Eng. C, 24, 293, 2004
    15.M. G. Berger, R. A. Fischer, M. Thoenissen, M. Krueger, S. Billat, H. Lueth, S. Hilbrich, W. Theiss, P. Grosse, Thin Solid Films, 297, 237, 1997
    16.M. S. Yoon, K. H. Ahn, R. W. Cheung, H. Sohn, J. R. Link, F. Cunin, M. J. Sailor, Chem. Commum., 680, 2003
    17.F. Caruso, R. A. Caruso, H. Mohwald, Science, 282, 1111, 1998
    18.F. Tang, H. Fudouzi, J. Zhang, Y. Sakka, Scr. Mat., 49, 735, 2003
    19.Y. B. Zhang, H. F. Shao, X. F. Qian, J. Yin, Z. K. Zhu, J. Solid State Chem., 177, 3675, 2004
    20.Y. Chen, E. T. Kang, K. G. Neoh, A. Greiner, Adv. Funct. Mater., 15, 113, 2005
    21.C. Schonenberger, B. M. I. van der Zande, L. G. J. Fokkink, M. Henny, C. Schmid, M. Kruger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B, 101, 5497, 1997
    22.C. Schonenberger, B. M. I. van der Zande, L. G. J. Fokkink, Mater. Res. Soc. Symp. Proc., 451, 359, 1997
    23.N. I. Kovtyukhova, B. R. Matin, J. K. N. Mbindyo, T. E. Mallouk, M. Cabassi, T. S. Mayer, Mater. Sci. Eng. C, 19, 255, 2002
    24.C. R. Martin, Science, 266, 196, 1994
    25.C. J. Brumlik, V. P. Menon, C. R. Martin, J. Mater. Res., 9, 1174, 1994
    26.G. E. Possin, Rev. Sci. Instrum., 41, 772, 1970
    27.W. D. Williams, N. Giordano, Rev. Sci., Instrum., 55, 410, 1984
    28.R. M. Penner, C. R. Martin, J. Electrochem. Soc., 133, 2206, 1986
    29.R. C. Furneaux, W. R. Rigby, A. P. Davidson, Nature, 337, 147, 1989
    30.R. J. Tonucci, B. L. Justus, A. J. Ca,pillo, C. E. Ford. Science, 258, 783, 1992
    31.C. G. Wu, B. Thomas, Science, 264, 1757, 1994
    32.M. Zhang, M. Drechsler, A. H. E. Muller, Chem. Mater., 16, 537, 2004
    33.R. Djalali, S. Y. Li, M. Schmidt, Macromolecules, 35, 4282, 2002
    34.A. W. Fahmi, H. G. Braun, M. Stamm, Adv. Mater., 15, 1201, 2003
    35.S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc., 124, 10192, 2002
    36.S. Minko, A. Kiriy, G. Gorodyska, M. Stamm, J. Am. Chem. Soc., 124, 3218, 2002
    37.G. Kickelbick, Prog. Polym. Sci., 28, 83, 2003
    38.C. Parka, J. Yoonb, E. L. Thomas, Polymer, 44, 6725, 2003
    39.T. Liua, C. Burgerb, B. Chub, Prog. Polym. Sci., 28, 5, 2003
    40.J. Zhang, S. Xu, E. Kumacheva, J. Am. Chem. Soc., 126, 7908, 2004
    41.E. Kroll, F. M. Winnik, R. F. Ziolo, Chem. Mater., 8, 1594, 1996
    42.S. Xu, J. Zhang, C. Paquet, Y. Lin, E. Kumacheva, Adv. Funct. Mater., 13, 468, 2003
    43.S. Xu, J. Zhang, E. Kumacheva, Compos. Interfaces, 10, 405, 2003
    44.M. Antonietti, F. Grohn, H. Hartmann, L. Bronstein, Angew. Chem. Int. Ed. Engl., 36, 2080, 1997
    45.M. Breulmann, H. Colfen, H. P. Hentze, M. Antonietti, D. Walsh, S. Mann, Adv. Mater., 10, 237, 1998
    46.R. C. Hedden, B. J. Bauer, A. P. Smith, F. Grohn, E. Amis, Polymer, 43, 5473, 2002
    47.R. M. Crooks, B. I. Lemon, L. Sun, L. K. Yeung, M. Q. Zhao, Top. Curr. Chem., 212, 81, 2001
    48.M. Q. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 120, 4877-8, 1998
    49.L. Balogh, D. A. Tomalia, J. Am. Chem. Soc., 120, 7355-6, 1998
    50.M. F. Ottaviani, F. Montalti, N. J. Turro, D. A. Tomalia, J. Phys. Chem. B, 101, 158, 1997
    51.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 2963, 1989
    52.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 2995, 1989
    53.A. Warshawsky, D. A. Upson, J. polym. sci., A, Polym. chem., 27, 3015, 1989
    54.H. Tamai, S. Hamamoto, Y. Hirota, F. Nishiyama, H. Yasuda, J. Colloid Interface Sci., 171, 25, 1995
    55.H. Tamai, H. Sakarai, Y. Hirota, F. Nishiyama, H. Yasuda, J. Appl. Polym. Sci., 56, 441, 1995
    56.H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, J. Mater. Sci., 35, 4945, 2000
    57.P. H. Wang, C. Y. Pan, 279, 171, 2001
    58.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 278, 581, 2000
    59.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 278, 245, 2000
    60.P. H. Wang, C. Y. Pan, Colloid Polym. Sci., 280, 152, 2000
    61.P. H. Wang, C. Y. Pan, Eur. Polym. J., 36, 2297, 2000
    62.P. H. Wang, C. Y. Pan, J. Appl. Polym. Sci., 75, 1693, 2000
    63.P. H. Wang, Y. Z. Wu, Q. R. Zhu, J. Mater. Sci. Lett., 21, 1825, 2002
    64.P. H. Wang, J. Appl. Polym. Sci., 88, 936, 2003
    65.A. B. R. Mayer, W. Grebner, R. Wannemacher, J. Phys. Chem. B, 104, 7278, 2000
    66.B. Cheng, Y. R. Zhu, W. Q. Jiang, C. Y. Wang, Z. Y. Chen, J. Chem. Research (s), 506, 1999
    67.A. Dokoutchaev, J. T. James, S. C. Koene, S. Pathak, Chem. Mater., 11, 2389, 1999
    68.D. Wu, X. Ge, Y. Huang, Z. Zhang, Q. Ye, Mater. Lett., 57, 3548, 2003
    69.A. S. Susha, F. Caruso, A. L. Rogach, G. B. Sukhorukov, A. Kornowski, H. Mohwald, M. Giersig, A. Eychmuller, H. Weller, Colloids surf., 163, 39, 2000
    70.F. Ciardelli, E. Tsuchida, D. Wohrle, “Macromolecule-Metal Complexes”, Berlin Springer, 1996
    71.S. H. Choi, Y. C. Nho, Radiation Phys. Chem., 57, 187, 2000
    72.B. W. Zhang, K. Fischer, D. Bieniek, A. Kettrup, React. Polym., 24, 49, 1994
    73.X. Chang, X. Yang, X. Wei, K. Wu, Anal. Chim. Acta., 450 , 231, 2001
    74.B. Gong, Talanta, 57, 89, 2002
    75.C. Xijun, L. Yanfeng, Z. Guangyao, L. Xingyin, G. Wenyun, Talanta, 43, 407, 1996
    76.W. Lee, T. Oshikiri, K. Saito, K. Sugita, T. Sugo, Chem. Mater., 8, 2618, 1996
    77.T. Kawai, K. Saito, K. Sugita, A. Katakai, N. Seko, T. Sugo, J. Kanno, T. Kawakami, Ind. Eng. Chem. Res., 39, 2910, 2000
    78.C. C. Wang, C. C. Chang, C. Y. Chen, Macromol. Chem. Phys., 202, 882, 2001
    79.C. C. Wang, C. Y. Chen, J. Appl. Polym. Sci., 84, 1353, 2002
    80.C. C. Wang, C. Y. Chen, C. C. Huang, C. Y. Chen, J. Membr. Sci., 208, 133, 2002
    81.C. C. Wang, W. S. Li, C. Y. Cheng, C. Y. Chen, J. Appl. Polym. Sci., 82, 3248, 2001
    82.C. C. Wang, H. G. Chen, H. B. Hsieh, C. Y. Chen, Polym. Adv. Technol., 14, 349, 2003
    83.W. H. Hou, C. Y. Chen, C. C. Wang, Polymer, 44, 2983, 2003
    84.W. H. Hou, C. Y. Chen, C. C. Wang, Y. H. Huang, Electrochim. Acta, 48, 679, 2003
    85.W. H. Hou, C. Y. Chen, C. C. Wang, Conductivity , Solid State Ion., 166, 397, 2004
    86.W. H. Hou, C. Y. Chen, C. C. Wang, Electrochim. Acta, 49, 2105, 2004
    87.陳志彥, 具側鏈亞胺乙二酸高分子與金屬離子之螯合性質的探討及應用, 國立成功大學博士論文, 民國九十一學年度
    88.W. Klöpffer, Eur. Polym. J., 11, 203, 1975
    89.F. Wu, J. Z. Zhang, R. Kho, R. K. Mehra, Chem. Phys. Lett., 330, 237, 2000
    90.W. R. Dawson, M, W. Windsor, J. Phys. Chem., 72, 3251, 1968
    91.C. W. Wang, M. G. Moffitt, Langmuir, 20, 11784, 2004
    92.C. Kittel, Phys. Rev., 70, 965, 1946
    93.D. L. L. Pelecky, R. D. Rieke, Chem. Mater., 8, 1770, 1996
    94.B. D. Cullity, Elements of X-ray diffraction, Addison-Wesley Publishing Company Inc., 1978
    95.J. Nanda, B. A. Kuruvilla, D. D. Sarma, Phys Rev.B., 59.7473, 1999
    96.L. Spanhel, M. Haase, H. Weller, A. Henglein, J . Am. Chem. SOC., 109, 5649, 1987
    97.A. Henglein, Chsm. Rev., 89, 1861, 1989
    98.J. U. Kim, B. O’Shaughnessy, Phys. Rev. Lett., 89, 238301-1, 2002
    99.A. N. Semenov, Sov. Phys. JETP, 61, 733, 1985
    100.D. R. M. Williams and P. A. Pincus, , Europhys. Lett., 24, 29, 1993
    101.H. Lamb, Hydrodynamics, Dover Publications, New York, 1945
    102.Z. X. Deng, L. Li, Y. Li, Inorg. Chem., 42, 2331, 2003
    103.G. Cunio, T. Gacoin, J. P. Boilot, J. Phys. Chem. B, 102, 5257, 1998
    104.N. Feltin, L. Levy, D. Ingert, M. P. Pileni, J. Phys. Chem. B, 103, 4, 1999
    105.D. J. Norris, N. Yao, F. T. Charnock, T. A. Kennedy, Nano Lett., 1, 3, 2001
    106.K. M. Hanif, R. W. Meulenberg, G. F. Strouse, J. Am. Chem. Soc., 124, 11495, 2002
    107.W. Chen, J. O. Malm, V. Zwiller, R. Wallenberg, J. O. Bovin, J. Appl. Phys., 89, 2671, 2001
    108.A. A. Khosravi, M. Kundu, B . A. Kuruvilla, G. S. Shekhawat, R. P. Gupta, A. K. Sharma, P. D. Vyas, S. K. Kulkarni, Appl. Phys. Lett., 67, 2506, 1995
    109.A. K. Bhattacharjee, J. P. Conde, Phys. Rev. B, 68, 045303, 2003
    110.D. E. Moore, K. Patel, Langmuir, 17, 2541, 2001
    111.S. Kuboniwa, H. Kawa, T. Hoshina, Jpn. J. Appl. Phys., 19, 1647, 1980

    下載圖示 校內:2008-06-15公開
    校外:2008-06-15公開
    QR CODE