簡易檢索 / 詳目顯示

研究生: 楊於錚
Yang, Yu-Cheng
論文名稱: 準分子雷射剝離技術應用於具鍍鎳金屬基板高功率垂直結構GaN基LEDs之研究
The fabrication of vertical structure GaN-based high power LEDs using laser lift-off process and an electroplating nickel substrate
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 62
中文關鍵詞: 準分子雷射雷射剝離技術垂直結構鍍鎳金屬基板
外文關鍵詞: excimer laser, laser lift-off, vertical structure, electroplating nickel substrate
相關次數: 點閱:94下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   GaN基LED是近年來被大量研究之題材,但其所採用藍寶石基板不導熱及不導電所衍生的種種問題卻無法有效解決。針對此點我們提出以鍍鎳金屬基板並配合雷射剝離技術(Laser lift-off)置換藍寶石基板,進行具垂直結構LED之研製,一舉解決傳統GaN基LED包括元件散熱不良、電流分佈不均、低流明通量與發光不均等諸多方面的問題。
      
      本論文使用原屬於機械精密加工所廣用的248 nm的KrF準分子雷射配合電鍍鎳金屬基板製程,不僅可迅速於數分鐘內移除2吋直徑藍寶石基板,成功將原成長於藍寶石上之氮化鎵薄膜置換至鍍鎳基板。據材料量測結果顯示,磊晶層並沒有因雷射加工而造成損害。
      
      於垂直結構LED之製程中,我們提出包括利用ICP乾蝕刻以增加試片p-GaN層表面濃度,降低元件順向偏壓與串聯電阻,以及浸泡KOH溶液濕蝕刻以在試片表面產生粗化效果,增加光輸出功率。實驗結果顯示,12 mil-LED元件順向偏壓比傳統元件降低0.1~0.2 V (@ 20 mA),而串聯電阻更是減少約50%,於20 mA工作電流條件下的光輸出功率,最多可比傳統元件增加185%,在在顯示使用金屬基板垂直式元件之優勢,而所製得具垂直結構LED之光電特性遠較傳統橫向結構LED優異。
      
      本論文亦進行大面積(40 mil  40 mil)垂直結構LED之研製。量測所得光輸出功率於350 mA工作電流條件下,甚至可比傳統者增加226%,且其串聯電阻均較傳統平面式元件降低30%以上。於相同順向偏壓情況下,其power efficiency可由2.36%提升至7.68%,不僅可降低能源的耗損,元件於大電流、高功率之工作條件下,其可靠度也會大為提升。

      In recent years, there have been many researches focusing on the GaN-based LED. However, a number of issues still persist when using sapphire as the substrate; they include the current crowding effect, the poor dissipation of heat, and low illumiance, etc. Incorporated with laser lift-off (LLO) technology to remove the sapphire substrate, a novel method using an electro-plating nickel substrate is proposed to realize high power GaN-based LEDs with a real vertical structure (VM-LED).
      
      In this thesis, the KrF excimer laser (wavelength = 248 nm) was used for the laser lift-off process. Technology to remove 2-inch sapphire within a few minutes was developed. Material characterization results reveal that the present LLO process does not infringe any damage to the epi-GaN layer.
      
      In experiments, surface treatment to the upmost GaN epilayer using inductive coupling plasma (ICP) dry etching and KOH wet etching together was proposed to further enhance the performance of vertical structure LEDs. For 12 mil VM-LEDs, it is found that the series resistance was reduced by 50% comparing to the conventional lateral type devices, and the forward voltage is also lowered by about 0.1~0.2 V (@ 20 mA). At a forward current of 20 mA, the light output power (LOP) of 12 mil VM-LEDs was enhanced by 185% as compared the conventional LEDs of the same chip size. For larger chip size devices (e. g. the 40-mil VM-LEDs), the measured power efficiency raised form 2.36% to 7.68% at a forward current of 350 mA, in addition, the best improvement in LOP as high as 226% was achieved. It is expected that the proposed fabrication method for the realization of vertical structure VM-LEDs would considerably improve both the power of efficiency and the power level for future lighting and high power applications.

    中文摘要 .................................................................... I 英文摘要 .................................................................. III 目錄 ........................................................................ V 表目錄 .................................................................... VII 圖目錄 ...................................................................... X 第一章 簡介 ................................................................ 1 1-1 GaN-基LED之發展現況 .................................................... 1 1-2 研究動機 ............................................................... 3 第二章 基板轉換技術 ........................................................ 5 2-1 準分子雷射系統 ......................................................... 5 2-2 試片製備 ............................................................... 8 2-2-1 電鍍前處理 ........................................................... 8 2-2-2 電鍍鎳製程 ...........................................................10 2-3 雷射剝離氮化鎵薄膜技術 .................................................12 2-3-1 整面剝離 .............................................................13 2-3-2 區塊剝離 .............................................................19 第三章 垂直結構LED製備 .....................................................23 3-1 ICP乾蝕刻 ..............................................................23 3-2 磊晶表面粗化 ...........................................................28 3-3 透明導電層 .............................................................32 3-4 垂直結構各層界面之接觸特性 .............................................34 第四章 實驗結果與分析 ......................................................38 4-1 垂直結構與傳統橫向式結構LED光電特性比較 ................................38 4-2 表面處理之效應 .........................................................42 4-3 元件面積之效應 .........................................................49 4-4 透明導電層之影響 .......................................................55 第五章 結論 ................................................................58 參考文獻 ....................................................................61

    1. M. G. Craford, “Nanoscience and Solid State Lighting,” presented at Department of Energy Nanosummit, Washington D.C., 2004.

    2. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue light emitting diodes,” Applied Physics Letters, no. 13, 28 Mar., pp. 1687-1689, 1994.

    3. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Go¨tz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, no. 22, 28 May, pp. 3379-3381, 2001.

    4. C. Algora, “Large-area infrared-emitting diodes with an output optical power greater than 1 W,” IEEE Photonics Technology Letters, vol. 10, no. 3, Mar., pp. 331-333, 1998.

    5. R. F. Reyna, A. Marti, C. Algora, J. C. Maroto, and G. L. Araujo, “Influence of size factors in the electroluminescent emission of large area GaAs IRED’s,” IEEE Transactions on Electron Devices, vol. 44, no. 7, Jul., pp.1174-1176, 1997.

    6. H. Kim, S. J. Park, and H. Hwang, “Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes,” IEEE Transactions on Electron Devices, vol. 48, no. 6, Jun., pp.1065-1069, 2001.

    7. X. Guo, Y.-L. Li, and E. F. Schubert, “Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry,” Applied Physics Letters, no.13, 24 Sep., pp. 1936-1938, 2001.

    8. X. Guo, and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Applied Physics Letters, no. 21, 21 May, pp. 3337-3339, 2001.

    9. M. R. Krames, G. Christenson, D. Collins, L. W. Cook,
    and M. G. Craford, “High-brightness AlGaInN light-emitting diodes,” in proc. SPIE, vol. 3938, pp. 2-12, 2000.

    10. H. Liu, W. So, K. Ma, B. Yuan and C. Chern, “High-volume production of AlInGaN-based LEDs,” Compound Semiconductor Magazine, vol. 7, no. 10, pp. 59-61, Nov., 2001.

    11. 李永春,準分子雷射細微加工機一般使用者訓練教材,國立成功大學機械工程系,2004。

    12. M. K. Kelly, O. Ambacher, B. Dahlheimer, G. Groos, R. Dimitrov, H. Angerer, and M. Stutzmann, “Optical patterning of GaN films,” Applied Physics Letters, no. 12, 16 Sep., pp. 1749-1751, 1996.

    13. W.S. Wong, T. Sands, and N.W. Cheung, “Damage-free separation of GaN thin films from sapphire substrates,” Applied Physics Letters, no. 5, 2 Feb., pp. 599-601, 1998.

    14. 朱振甫,利用雷射剝離技術製作氮化鎵發光元件之研究,國立交通大學光電工程研究所博士論文,2003。

    15. W. S. Wong, J. Krüger, Y. Cho, B. P. Linder, E. R. Weber, N. W. Cheung, and T. Sands, “Selective UV-laser processing for lift-off of GaN thin films from sapphire substrates,” in Proc. Symp. on Light Emitting Devices for Optoelectronic Applications and State-of-the-Art Program on Compound Semiconductors XXVIII, Vol. 98-2, pp. 377-384, 1998.

    16. 楊忠諺、葉源益,「乾式蝕刻於矽微加工及微機電方面之應用」,毫微米通訊,8卷4期:11~17,2001。

    17. H. W. Choi, S. J. Chua, X. Xu, and Y. Sun, “Electrical Properties of ICP Plasma-Damaged n-GaN,” published by IPAP Conference Series 1, Tokyo, pp. 786-789, 2000.

    18. Y. Gao, T. Fujii, R. Sharma, K. Fujito, S. P. Denbaars, S. Nakamura, and E. L. Hu, “Roughening Hexagonal Surface Morphology on Laser Lift-Off (LLO) N-Face GaN with Simple Photo-Enhanced Chemical Wet Etching,” Japanese Journal of Applied Physics, vol. 43, no. 5A, pp. L637-L639, 2004.

    19. L. C. Chen and Y. L. Huang, “High reliability GaN-based light-emitting diodes with photo-enhanced wet etching,” Solid-State Electronics, vol. 48, no. 7, Jul., pp. 1239-1242, 2004.

    20. Y. J. Lin and C. T. Lee, “Investigation of surface treatments for nonalloyed ohmic contact formation in Ti/Al contacts to n-type GaN,” Applied Physics Letters, no. 24, 11 Dec., pp. 3986-3988, 2000.

    21. 吳晉坤,銦鋅氧化物透明導電薄膜應用於高功率GaN基LED之研究,國立成功大學微電子工程研究所碩士論文,2004。

    22. S. Tripathy, S. J. Chua, and A. Ramam, “Electronic and vibronic properties of n-type GaN: the influence of etching and annealing,” Journal of Physics: Condensed Matter, no. 17, 6 May, pp. 4461-4476, 2002.

    下載圖示 校內:立即公開
    校外:2005-07-13公開
    QR CODE