| 研究生: |
林纓如 Lin, Ying-lu |
|---|---|
| 論文名稱: |
三維物件處理於虛擬手術及模擬的應用 3D Object Manipulation on Virtual Surgical and Simulation Application |
| 指導教授: |
陳立祥
Chen, Lih-shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 虛擬手術 、三維物件操作 |
| 外文關鍵詞: | 3D Object Manipulation, Virtual Surgical |
| 相關次數: | 點閱:70 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過Marching Cube演算法將一系列的電腦斷層掃描或核磁共振影像建立起醫學三維物件,我們提供操作工具可讓醫生對有興趣的區域做切割,在切割後可觀看每一次切割表面的灰階值變化,可藉由灰階值變化幫助醫生對病症的分析有更精準的判斷,除此之外,於切割區域處可保留某些組織或器官以模擬更真實的醫學切割情況。而在立體場景中提供手術刀工具,藉由此工具可進行模擬手術,我們亦會將手術刀在立體場景中的位置與二維圖像作對應,讓醫生得知手術刀由人體切入時會經過哪些組織。一般而言,重建三維物件的來源為一系列的二維醫學影像,而三維物件的品質往往受二維影像解析度的影響,因此我們透過曲線內插的方式來提高二維影像解析度,以建立更高品質的三維物件,於在實作方面,我們採用SSE等技術來提高演算法的執行效率。
本研究探討如何將醫學影像所建立之三維物件應用於模擬醫學及虛擬手術的操作,在模擬過程中的任何操作,使用者往往需透過三維物件與二維影像的座標對應來觀察,因此我們透過觀察者樣板來管理座標對應機制,本研究所實作之系統可做為醫療人員的培訓工具,對於醫療評估亦可降低誤判風險。
This research uses Marching Cube Algorithm to build the medical 3D object from a series of CT or MRI images. We supply manipulation tools so that a doctor can cut 3D object according to region of interesting. The doctor can examine gray level variation of 3D object’s cut surface. The doctor has precise analysis according the variation for the ill parts. Besides,to preserve some tissue or organs within the cut region makes the surgery or medical model with reality.We also supply bistoury tool in the 3D scene.The system has the corresponding between 2D and 3D bistoury position. According to corresponding, doctor will know tissue by bistoury passing through.In general,a 3D medical object is reconstructed from a serial 2D images.So the bad resolution will lead to low quality 3D object.In order to get high quality 3D object,we use the tricubic spline interpolation to improve 2D image resolution.To enhance performance, we use some technique like SSE instructions .
This research provides some medical simulation using 3D object. Because of user usually observe the corresponding between 2D and 3D, we use the observer pattern to manage coordinate mechanism. The research implemented system can be used to help medical worker education or to decrease diagnose risk in medicine.
[1] 鄭文林,立體影像在大腸鏡模擬及光學微影分析之應用,台南,國立成功大學碩士論文,2009。
[2] 蔣正彥,立體醫學影像的品質提昇與應用,台南,國立成功大學碩士論文,2008。
[3] 李崇偉,物體輪廓線模型及其3D影像在醫學上的應用,台南,國立成功大學碩士論文,2007。
[4] Frank D. Luna/著, 黃聖峰/譯, “3D遊戲程式設計入門:使用DirectX 9.0實作”, 博碩文化, 台北縣, 2004。
[5] Frank D. Luna, Introduction to 3D Game Programming with DirectX 9.0, WordwarePublishing, 2003.
[6] Van Verth, James M./ Bishop, Lars M./ Verth, Jim M. Van /著,” ESSENTIAL MATHEMATICS FOR GAMES & INTERACTIVE APPLICATIONS: A PROGRAMMER'S GUIDE”, Baker & Taylor Books, 2004
[7] Barsky, B. Computer graphics and geometric modeling using beta-splines. Springer-verlag, New York, 1988.
[8] Cohen, D., Kaufman, A., Bakalash, R., and Bergman, S, Real-time discrete shading. The Visual Computer , 1990, 6, 1, 16-27.
[9] Gibson, S. F. F. Using distance maps for accurate surface reconstruction in sampled volumes. In IEEE Symposium on Volume Visualization, 1998, 23–30.
[10] Gordon, D., and Reynolds, R. A. Image space shading of 3-dimensional objects. Computer Graphics and Image Processing, 1985, 29, 3. 361-376.
[11] Hoehne, K. H., and Bernstein, R. Shading 3D-images from CT using grey-level gradients. IEEE Transactions on Medical Imaging , 1986, 5, 1, 45-57.
[12] Bright, S., and Laflin, S, Shading of solid voxel models. Computer Graphics Forum 1986, 5,2, 131-138.
[13] Chen, L. S., and Sontag, M, Representation, display, and manipulation of 3D digital scenes. Computer Vision, Graphics, and Image Processing, 1989, 48, 2, 190-216.
[14] Chen, L. S., Herman, G. T., Reynolds, R. A., and Udupa, J. K, Surface shading in the Cuberille environment. IEEE Computer Graphics and Applications, 1985, 5, 12, 33-43.
[15] Höhne, K. H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., and Wiebecke, G. 3D visualization of tomographic volume data using the generalized voxel model. The Visual Computer, 1990, 6, 1, 28-36.
[16] Kaufman, A. Volume graphics. IEEE Computer , 1993, 26, 7, 51-64.
[17] Magnusson, M., Lenz, R., and Danielsson, P. -E. Evaluation of methods for shaded display of CT volumes. Proceedings 9th International Conference Pattern Recognition, 1988, 2, 1287-1294.
[18] Ratliff, F. Contour and contrast. Scientific American, 1972, 226, 6, 91-101.
[19] Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H. P. Feature sensitive surface extraction from volume data. In Proceedings of ACM SIGGRAPH 2001, 57–66.
[20] Losasso, T. F., Schaefer, S., and Warren, J.. Dual contouring of hermite data. ACM Transactions on Graphics 2002, 21, 3, 339–346.
[21] Lorensen, W. E., Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, 1987, v.21 n.4, p.163-169.
[22] ScanView. http://graphics.stanford.edu/software/s-canview/, 1972.
[23] http://www.lighthouse3d.com/opengl/maths/index.php?catmullrom
[24] Tam, Y. –W., and Davis, W. A. Display of 3D medical images. Proceedings on Graphics Interface, 1988, 78-86.
[25] Yagel, R., Cohen, D., and Kaufman, A. Normal estimation in 3D discrete space. The visual computer, 1992, 8, 278-291.
[26] http://en.wikipedia.org/wiki/Publish/subscribe