簡易檢索 / 詳目顯示

研究生: 凃孟韓
Tu, Meng-Han
論文名稱: 透過遞送治療性mRNA來恢復COL7A1表現:隱性表皮溶解水皰症的潛在治療方法
Restoration of COL7A1 by delivery of therapeutic mRNA: potential treatment of recessive epidermolysis bullosa
指導教授: 余建泓
Yu, Chien-Hung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 40
中文關鍵詞: 隱性失養型表皮溶解水皰症VII 型膠原蛋白mRNA 治療脂質奈米顆粒
外文關鍵詞: Recessive dystrophic epidermolysis bullosa (RDEB), COL7A1, Type VII collagen(COL7), mRNA therapy, Lipid nanoparticles (LNPs)
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隱性失養型表皮溶解水皰症是一種由 COL7A1 基因突變引起的嚴重疾病,導致 VII 型膠原蛋白的缺失或功能障礙,而VII 型膠原蛋白是真皮-表皮連接處錨定纖維的關鍵成分。目前的治療策略是利用局部給藥的方式將病毒載體將全長 COL7A1 cDNA 直接遞送至皮膚傷口,以恢復局部蛋白質表現。雖然此類方法已在臨床上取得成功,但仍受載體相關免疫原性、組織穿透性不足以及基因組整合導致插入突變風險的限制。為了克服這些障礙,我們研究了一種基於非病毒 mRNA 的治療方法。我們將經過 N1-甲基-假尿苷和 AG Clean Cap 修飾的 COL7A1 mRNA,透過電穿孔與脂質奈米顆粒傳送至 COL7A1 基因敲除的 HaCaT 角質形成細胞中。經由免疫螢光與西方墨點法分析證實VII 型膠原蛋白蛋白的成功表現,顯示其在蛋白質層面具有功能恢復能力。接著為了評估其體內遞送潛力,我們將包裹螢光素酶 mRNA 的脂質奈米顆粒注射至隱性失養型表皮溶解水皰症的小鼠,觀察到明顯的冷光表現,顯示該平台具備轉譯應用潛力。進一步地,我們將包裹 COL7A1 mRNA 的脂質奈米顆粒經由皮下注射施打至隱性失養型表皮溶解水皰症的小鼠傷口附近,免疫組織化學結果顯示VII 型膠原蛋白在局部表現有部分恢復。我們的研究結果凸顯了脂質奈米顆粒介導的 mRNA 療法作為隱性失養型表皮溶解水皰症下一代基因替代策略的潛力。與基於病毒載體的系統相比,該平台能夠實現瞬時、無整合的表達,降低免疫原性,並支持重複或全身給藥,從而為隱性失養型表皮溶解水皰症和其他遺傳性皮膚病提供了一種有前景且靈活的治療方式。

    Recessive dystrophic epidermolysis bullosa (RDEB), also known as “butterfly disease,” is a severe genetic skin disorder caused by mutations in the COL7A1 gene, resulting in the absence or dysfunction of type VII collagen (COL7), a critical component of anchoring fibrils at the dermal–epidermal junction. Current therapies rely on viral vectors to deliver full-length COL7A1 cDNA directly to skin wounds, aiming to restore local protein expression. While clinical successes have been reported, these approaches are limited by vector-associated immunogenicity, inadequate tissue penetration, and the risk of insertional mutagenesis due to genomic integration. To address these limitations, we developed a non-viral mRNA-based therapeutic strategy. Chemically modified COL7A1 mRNA, incorporating N1-methylpseudouridine and an AG Clean Cap, was delivered into COL7A1-knockout HaCaT keratinocytes via electroporation and lipid nanoparticles (LNPs). Expression of functional COL7 protein was confirmed by immunofluorescence and Western blot, indicating protein restoration. To assess in vivo potential, luciferase mRNA-loaded LNPs were injected into the model RDEB mice, resulting in strong bioluminescence signals, confirming effective mRNA expression. Furthermore, LNPs encapsulating COL7A1 mRNA were subcutaneously administered near the wound sites of RDEB mice, and immunohistochemistry revealed partial restoration of COL7 expression in treated skin. Our findings demonstrate the potential of LNP-mediated mRNA therapy as a next-generation gene replacement strategy for RDEB. Compared with viral systems, this platform offers transient, integration-free expression with lower immunogenicity and supports repeated or systemic delivery, providing a safer and more versatile therapeutic approach for RDEB and other inherited skin disorders.

    ABSTRACT1 中文摘要2 ACKNOWLEDGMENT3 CONTENTS4 LIST OF FIGURES6 INTRODUCTIONS7 SPECIFIC AIMS11 MATERIALS AND METHODS12 1.Cell culture12 2.Synthesis of RNA by in vitro transcription12 3.Preparation of mRNA Lipid Nanoparticles12 4.Cell transfections12 4.1Electroporation13 4.2mRNA transfection reagent13 4.3Lipid Nanoparticles13 5.Western blot14 6.Cell immunofluorescence14 7.Mice15 8.Administration of LNPs to mice15 9.Bioluminescence imaging studies15 10.Immunohistochemistry15 RESULTS17 1.Efficient restoration of type VII collagen in COL7A1-deficient cells via synthetic mRNA delivery17 2.mRNA transfection restored conformationally correct COL7 protein expression in vitro17 3.LNP-mediated delivery of COL7A1 mRNA restores expression and conformation of COL7 protein in COL7A1-deficient keratinocytes18 4.LNP-delivered luciferase mRNA confirms tissue distribution18 5.Immunohistochemistry confirms COL7 protein expression in mouse skin following LNP-delivered COL7A1 mRNA and Functional Skin Recovery19 DISCUSSION21 REFERENCES22 FIGURES26 SUPPLEMENT38

    1.Fine, J.-D. Inherited epidermolysis bullosa. Orphanet Journal of Rare Diseases 5, 12, doi:10.1186/1750-1172-5-12 (2010).
    2.Mariath, L. M., Santin, J. T., Schuler-Faccini, L. & Kiszewski, A. E. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. Anais brasileiros de dermatologia 95, 551-569, doi:10.1016/j.abd.2020.05.001 (2020).
    3.Panzaru, M. C., Caba, L., Florea, L., Braha, E. E. & Gorduza, E. V. Epidermolysis Bullosa-A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 12, doi:10.3390/diagnostics12061325 (2022).
    4.Piñón Hofbauer, J. et al. Challenges and progress related to gene editing in rare skin diseases. Advanced Drug Delivery Reviews 208, 115294, doi:https://doi.org/10.1016/j.addr.2024.115294 (2024).
    5.Welponer, T. et al. Clinical Perspectives of Gene-Targeted Therapies for Epidermolysis Bullosa. Dermatol Ther (Heidelb) 11, 1175-1197, doi:10.1007/s13555-021-00561-5 (2021).
    6.Popp, C. et al. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. Journal of Investigative Dermatology 144, 1943-1953, doi:https://doi.org/10.1016/j.jid.2024.03.008 (2024).
    7.Atanasova, V. S. et al. Identification of Rigosertib for the Treatment of Recessive Dystrophic Epidermolysis Bullosa-Associated Squamous Cell Carcinoma. Clin Cancer Res 25, 3384-3391, doi:10.1158/1078-0432.CCR-18-2661 (2019).
    8.Christiano, A. M. et al. Structural Organization of the Human Type VII Collagen Gene (COL7A1), Composed of More Exons Than Any Previously Characterized Gene. Genomics 21, 169-179, doi:https://doi.org/10.1006/geno.1994.1239 (1994).
    9.Burgeson, R. E. Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol 101, 252-255, doi:10.1111/1523-1747.ep12365129 (1993).
    10.Chung, H. J. & Uitto, J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin 28, 93-105, doi:10.1016/j.det.2009.10.011 (2010).
    11.Varki, R., Sadowski, S., Uitto, J. & Pfendner, E. Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J Med Genet 44, 181-192, doi:10.1136/jmg.2006.045302 (2007).
    12.Eichstadt, S. et al. From Clinical Phenotype to Genotypic Modelling: Incidence and Prevalence of Recessive Dystrophic Epidermolysis Bullosa (RDEB). Clin Cosmet Investig Dermatol 12, 933-942, doi:10.2147/CCID.S232547 (2019).
    13.Guide, S. V. et al. Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa. N Engl J Med 387, 2211-2219, doi:10.1056/NEJMoa2206663 (2022).
    14.Vanden Oever, M., Twaroski, K., Osborn, M. J., Wagner, J. E. & Tolar, J. Inside out: regenerative medicine for recessive dystrophic epidermolysis bullosa. Pediatric Research 83, 318-324, doi:10.1038/pr.2017.244 (2018).
    15.Hou, P. C., Del Agua, N., Lwin, S. M., Hsu, C. K. & McGrath, J. A. Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Ther Clin Risk Manag 19, 455-473, doi:10.2147/TCRM.S386923 (2023).
    16.Koller, U., Bauer, J. W. & Mayr, E. in Gene Therapy - Tools and Potential Applications (ed Francisco Martín-Molina) (IntechOpen, 2013).
    17.Hainzl, S. et al. COL7A1 Editing via CRISPR/Cas9 in Recessive Dystrophic Epidermolysis Bullosa. Mol Ther 25, 2573-2584, doi:10.1016/j.ymthe.2017.07.005 (2017).
    18.South, A. P. & Uitto, J. Type VII Collagen Replacement Therapy in Recessive Dystrophic Epidermolysis Bullosa-How Much, How Often? J Invest Dermatol 136, 1079-1081, doi:10.1016/j.jid.2016.03.005 (2016).
    19.Lwin, S. M. et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight 4, doi:10.1172/jci.insight.126243 (2019).
    20.Wang, X. et al. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Mol Ther 21, 1335-1344, doi:10.1038/mt.2013.87 (2013).
    21.Hou, Y. et al. Intravenously Administered Recombinant Human Type VII Collagen Derived from Chinese Hamster Ovary Cells Reverses the Disease Phenotype in Recessive Dystrophic Epidermolysis Bullosa Mice. J Invest Dermatol 135, 3060-3067, doi:10.1038/jid.2015.291 (2015).
    22.Fertala, A. Three Decades of Research on Recombinant Collagens: Reinventing the Wheel or Developing New Biomedical Products? Bioengineering (Basel) 7, doi:10.3390/bioengineering7040155 (2020).
    23.Wei, H. H., Zheng, L. & Wang, Z. mRNA therapeutics: New vaccination and beyond. Fundam Res 3, 749-759, doi:10.1016/j.fmre.2023.02.022 (2023).
    24.Bruckner-Tuderman, L., Höpfner, B. & Hammami-Hauasli, N. Biology of anchoring fibrils: lessons from dystrophic epidermolysis bullosa. Matrix Biology 18, 43-54, doi:https://doi.org/10.1016/S0945-053X(98)00007-9 (1999).
    25.Fatima, M., Park, P.-G. & Hong, K.-J. Clinical advancements in mRNA vaccines against viral infections. Clinical Immunology 271, 110424, doi:https://doi.org/10.1016/j.clim.2024.110424 (2025).
    26.Xiao, Y. et al. Emerging mRNA technologies: delivery strategies and biomedical applications. Chem Soc Rev 51, 3828-3845, doi:10.1039/d1cs00617g (2022).
    27.Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther 16, 1833-1840, doi:10.1038/mt.2008.200 (2008).
    28.Ma, Y., Li, S., Lin, X. & Chen, Y. A perspective of lipid nanoparticles for RNA delivery. Exploration 4, 20230147, doi:https://doi.org/10.1002/EXP.20230147 (2024).
    29.Guri-Lamce, I. et al. Lipid Nanoparticles Efficiently Deliver the Base Editor ABE8e for COL7A1 Correction in Dystrophic Epidermolysis Bullosa Fibroblasts In Vitro. Journal of Investigative Dermatology 144, 2314-2317.e2313, doi:https://doi.org/10.1016/j.jid.2024.03.027 (2024).
    30.Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery 17, 261-279, doi:10.1038/nrd.2017.243 (2018).
    31.Sahin, U. et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 586, 594-599, doi:10.1038/s41586-020-2814-7 (2020).
    32.Polack Fernando, P. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. New England Journal of Medicine 383, 2603-2615, doi:10.1056/NEJMoa2034577 (2020).
    33.Jones, B. E. et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Science Translational Medicine 13, eabf1906, doi:10.1126/scitranslmed.abf1906 (2021).
    34.Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107-112, doi:10.1038/s41586-020-2537-9 (2020).
    35.Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy 27, 710-728, doi:10.1016/j.ymthe.2019.02.012 (2019).
    36.Schlake, T. et al. mRNA: A Novel Avenue to Antibody Therapy? Molecular Therapy 27, 773-784, doi:10.1016/j.ymthe.2019.03.002 (2019).
    37.Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25, 1234-1257, doi:10.1080/10717544.2018.1474964 (2018).
    38.Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology 41, 663-672, doi:10.1038/s41587-022-01532-7 (2023).
    39.Zhang, C., Maruggi, G., Shan, H. & Li, J. Advances in mRNA Vaccines for Infectious Diseases. Front Immunol 10, 594, doi:10.3389/fimmu.2019.00594 (2019).
    40.Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Science Translational Medicine 13, eabc7804, doi:10.1126/scitranslmed.abc7804 (2021).
    41.Blakney, A. K. et al. Innate Inhibiting Proteins Enhance Expression and Immunogenicity of Self-Amplifying RNA. Molecular Therapy 29, 1174-1185, doi:10.1016/j.ymthe.2020.11.011 (2021).
    42.Wesselhoeft, R. A. et al. RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration <em>In&#xa0;Vivo</em>. Molecular Cell 74, 508-520.e504, doi:10.1016/j.molcel.2019.02.015 (2019).
    43.Beissert, T. et al. A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Molecular Therapy 28, 119-128, doi:10.1016/j.ymthe.2019.09.009 (2020).

    無法下載圖示 校內:2030-08-29公開
    校外:2030-08-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE