| 研究生: |
蔡俐萱 Tsai, Li-Xuan |
|---|---|
| 論文名稱: |
超低功耗喚醒接收器採用高轉換增益及高靈敏度包絡檢測器 An Ultralow-Power Wake-Up Receiver with High Conversion Gain and High Sensitivity Envelope Detector |
| 指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 喚醒接收機 、超低功耗 、ISM頻段 、正回授包絡檢測器 、閥值可調比較器 |
| 外文關鍵詞: | wake-up receiver, ultra-low power, ISM band, positive feedback envelope detector, programmable threshold comparator |
| 相關次數: | 點閱:125 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實現一個操作在ISM頻帶(Industrial Scientific Band), 可接收並解調振幅鍵控調變(ASK)的超低功耗喚醒接收器。在喚醒接收機的架構方面,採用直接偵測的架構以包絡檢測器實現訊號解調,並捨棄高功耗的射頻前端低雜訊放大器並利用高品質因數的外部電感提高電壓的增益,藉此實現超低功耗的喚醒接收器。
在包絡檢測器方面,提出了藉由正回授的架構,藉由調整迴路增益達到高轉換增益,並同時考量雜訊及轉換增益,對整體的喚醒接收機進行優化。當訊號藉由包絡檢測器解調過後,在利用比較器還原輸入的喚醒碼,並透過16-bits的相關器增加喚醒接收的靈敏度,而當比較與目標喚醒碼的相關性。當相關性超過所設定的位元時,即產生喚醒訊號。而考量到喚醒接收器屬於大部分的時間都不會有輸入訊號的運作機制,在等待喚醒碼進入的同時,可能會因為環境的干擾而造成誤判進而送出喚醒訊號,因此在比較器方面採用閥值可調的架構以抵抗環境的干擾。包絡檢測器的迴路增益、目標喚醒碼以及比較器閥值皆由一個數位合成的SPI 所設定。本設計使用台積電提供的0.18微米CMOS製程。此喚醒接收機在加入編碼增益後預期在433百萬赫茲及2.4億赫茲分別可達到-67.1 dBm 及-61.1 dBm的靈敏度。供應電壓為0.6伏特時,消耗46.2毫微瓦。
This thesis presents an ultra-low power wake-up receiver (WuRx). This WuRx operates in Industrial Scientific Band (ISM) and can demodulate the on-off keying (OOK) modulated wake-up signal. In this work, a detector-first architecture and an external high Q inductance be used to achieve the ultralow power and high voltage gain in RF, respectively.
The envelope detector (ED) with positive feedback to enhance its conversion gain is proposed. The loop gain of the ED can be programmable to overcome the process variation. Following the ED, a programmable threshold comparator is used to recover the baseband signal, and a 16-bit correlator to enhance the sensitivity. When the correct bits are greater than threshold value, a wake-up signal will be generated. Considering the operation of the wake-up receiver in the low SNR situation, it will cause the false alarm. A programmable threshold comparator is used to avoid false alarms. Set the reference code of the WuRx receiver, the loop gain of the ED, and the threshold of the comparator through the SPI. This chip is fabricated in 0.18 μm TSMC technology. The WuRx operating at 433MHz and 2.4GHz with 10 kbps and an expected sensitivity with coding gain is -67.1 dBm and -61.1 dBm, respectively. The power consumption is 46.2nW under a 0.6-V supply voltage.
[1] P. P. Wang et al., "A 400 MHz 4.5 nW −63.8 dBm sensitivity wake-up receiver employing an active pseudo-balun envelope detector," ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Conference, 2017, pp. 35-38
[2] P. H. P. Wang et al., “A near-zero-power wake-up receiver achieving −69-dBm sensitivity,” IEEE J. Solid-State Circuits, vol. 53, no. 6, pp. 1640–1652, Jun. 2018.
[3] N. E. Roberts and D. D. Wentzloff, "A 98nW wake-up radio for wireless body area networks," 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, 2012, pp. 373-376
[4] E. Martens; B. Hershberg; J. Craninckx, ‘’Wide-tuning range programmable threshold comparator using capacitive source-voltage shifting,” IEEE Electronics Letters, vol 54, Issue: 25, Dec 2018.
[5] C. Hambeck, S. Mahlknecht and T. Herndl, "A 2.4µW Wake-up Receiver for wireless sensor nodes with −71dBm sensitivity," 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, 2011, pp. 534-537
[6] K. Cheng and S. Chen, "An Ultralow-Power Wake-Up Receiver Based on Direct Active RF Detection," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 7, pp. 1661-1672, July 2017
[7] E. A. Vittoz, “Weak inversion for ultra low-power and very low-voltage circuits,” in Proc. IEEE Asian Solid-State Circuits Conf. Dig. Tech. Papers, Nov. 2009, pp. 129–132.
[8] J. Moody et al., “An 8.3 nW−72 dBm event driven IoE wake up receiver RF front end,” in Proc. 12th Eur. Microw. Integr. Circuits Conf. (EuMIC), Oct. 2017, pp. 77–80.
[9] N. E. Roberts et al., “A 236 nW −56.5 dBm-sensitivity Bluetooth low-energy wakeup receiver with energy harvesting in 65 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan./Feb. 2016, pp. 450–451
[10] P.-H. P. Wang et al., “A 6.1-nW wake-up receiver achieving −80.5- dBm sensitivity via a passive pseudo-balun envelope detector,” IEEE Solid-State Circuits Lett., vol. 1, no. 5, pp. 134–137, May 2018.
[11] J. Moody et al., “A −76 dBm 7.4 nW wakeup radio with automatic offset compensation,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 452–454.
[12] K. R. Sadagopan, J. Kang, S. Jain, Y. Ramadass, and A. Natarajan, “A 365 nW −61.5 dBm sensitivity, 1.875 cm2 2.4 GHz wake-up receiver with rectifier-antenna co-design for passive gain,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2017, pp. 180–183.
[13] B. Razavi, “The StrongARM latch [A circuit for all seasons],” IEEE Solid-State Circuits Mag., vol. 7, no. 2, pp. 12–17, 2015.
[14]D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl and B. Nauta, "A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 314-605,
[15] S. Oh, N. E. Roberts and D. D. Wentzloff, “A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection," Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, pp. 1-4.
[16] V. Mangal and P. R. Kinget, "Sub-nW Wake-Up Receivers With Gate-Biased Self-Mixers and Time-Encoded Signal Processing," in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3513-3524, Dec. 2019.
[17] D. C. Daly and A. P. Chandrakasan, "An Energy-Efficient OOK Transceiver for Wireless Sensor Networks," in IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1003-1011, May 2007
[18] N. Pletcher, S. Gambini and J. Rabaey, "A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes," 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 539-542
[19] N. M. Pletcher, S. Gambini and J. Rabaey, "A 52 μW Wake-Up Receiver With -72 dBm Sensitivity Using an Uncertain-IF Architecture," in IEEE Journal of Solid-State Circuits, vol. 44, no. 1, pp. 269-280, Jan. 2009
[20] David D. Wentzloff, “Low Power Radio Survey,” [Online]. www.eecs.umich.edu/wics/low_power_radio_survey.html
[21] H. S. Bindra, C. E. Lokin, D. Schinkel, A. Annema and B. Nauta, "A 1.2-V Dynamic Bias Latch-Type Comparator in 65-nm CMOS With 0.4-mV Input Noise," in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 1902-1912, July 2018,
[22] P. Schulz et al., "Latency Critical IoT Applications in 5G: Perspective on the Design of Radio Interface and Network Architecture," in IEEE Communications Magazine, vol. 55, no. 2, pp. 70-78, February 2017.
[23] C. Bryant and H. Sjöland, "A 2.45GHz, 50uW wake-up receiver front-end with −88dBm sensitivity and 250kbps data rate," ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC), 2014
[24] S. Oh and D. D. Wentzloff, "A −32dBm sensitivity RF power harvester in 130nm CMOS," 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 483-486
[25] H. Jiang et al., "24.5 A 4.5nW wake-up radio with −69dBm sensitivity," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 416-417
[26] E. A. Vittoz, "Weak inversion for ultra low-power and very low-voltage circuits," 2009 IEEE Asian Solid-State Circuits Conference, 2009, pp. 129-132
[27] C. Hambeck, S. Mahlknecht and T. Herndl, "A 2.4µW Wake-up Receiver for wireless sensor nodes with −71dBm sensitivity," 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011, pp. 534-537
校內:2026-10-01公開