| 研究生: |
王敘全 Wang, Hsu-chuan |
|---|---|
| 論文名稱: |
結合腦波頻譜與複雜性分析之強健式線上癲癇發作偵測 Combination of EEG Spectrum and Complexity Analysis for Robust Online Epileptic Seizure Detection |
| 指導教授: |
梁勝富
Liang, Sheng-fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 頻譜 、腦電圖 、癲癇發作偵測 、癲癇 、分類 、熵 、複雜度 |
| 外文關鍵詞: | complexity, entropy, spectrum, electroencephalogram (EEG), seizure detection, Epilepsy, classification. |
| 相關次數: | 點閱:122 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癲癇是一種最常見的神經系統失調疾病之一,全球約有1%的人患有癲癇,其中25%的癲癇患者不能經由任何方式成功治療。癲癇是由大腦的不正常放電所引起,因此在臨床評估、偵測、及治療癲癇上,腦電圖已是極為重要的工具。近年來已開發出許多藉由腦電圖來控制釋放藥物或給予電刺激來抑制癲癇發作的裝置且在臨床下運作。然而,運算快速並能立即根據各種癲癇種類在人類病理上的變化而作用的裝置目前則尚待開發。
在這篇論文中,我們經由頻譜和複雜度的分析,提出了一個運算快速且可靠的癲癇偵測方法。我們提出一個複雜度的測度ApC,並將之與所挑出來的頻帶的能量結合以用來偵測癲癇。另外也將使用一能提早偵測時間的方法使之能在癲癇發作後極短時間內偵測到以便給予抑制。此方法已應用在三種不同種類的癲癇上,由實驗結果可得知,在癲癇發作後0.36秒到0.69秒內能偵測到,並可達到95%以上的準確率。
Epilepsy is one of the most common neurological disorders, approximately 1% of people in the world have epilepsy, 25% of epilepsy patients cannot be treated sufficiently by any available therapy. Epilepsy is caused by abnormal discharges in the brain, thus EEG has been an especially valuable clinical tool for the evaluation, detection, and treatment of epilepsy. Through EEG recordings, a number of systems which can release drug or give an electrical stimulation to suppress the seizures have been developed and under clinical operation for years. However, a robust device has not yet been developed which compute quickly and fast enough to action to meet immediately pathological changes of different types of seizures in human.
In this paper, we propose a fast and reliable epilepsy detection method based on the complexity analysis and spectrum analysis. We propose complexity measure ApC and combine it with selected frequency bands power as the features for detecting seizures. An early seizure detection method is also presented which can detect seizures in a short time while seizures onset. Three different types of seizures are used for testing the detection performance. By the experiment result, the proposed epilepsy detection method can detect seizures in accuracy above 95% with a short detection delay 0.36-0.69 sec.
Alkan, A., Koklukaya, E., Subasi, A., “Automatic seizure detection in EEG using logistic regression and artificial neural network,” Journal of Neuroscience Method, vol. 148, pp. 167-176, 2005.
Adeli, H., Ghosg-Dastidar, S., and Dadmehr, N., “A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, 2007.
Adeli, H., Zhou, Z., and Dadmehr, N., “Analysis of EEG records in an epileptic patient using wavelet transform,” Journal of Neuroscience Methods, vol. 123, pp. 69-87, 2003.
Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E., “Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state,” Physical Review E, vol. 64, 061907, 2001.
Acır, N., Öztura, İ., Kuntalp, M., Baklan, B., and Güzeliş, C., “Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 1, pp. 30-40, 2005.
Bosnyakova, D., Gabova, A., Zharikova, A., Gnezditski, V., Kuznetsova, G., and van Luijtelaar, F., “Some peculiarities of time-frequency dynamics of spike-wave discharges in humans and rats,” Clinical Neurophysiology, vol. 118, pp. 1736-1743, 2007.
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and Nielsen, H., “Assessing the accuracy of prediction algorithms for classification: an overview,” Bioinformatics, vol. 16, no. 5, pp. 412-424, 2000.
Chaovalitwongse, W. A., Fan, Y., and Sachdeo, E. C., “On the time series k-nearest neighbor classification of abnormal brain activity,” IEEE Transactions on Systems, Man and Cybernetics – Part A: Systems and Humans, vol. 37, no. 6, 2007.
Danober, L., Deransart, C., Depaulis, A., Vergnes, M., and Marescaus, C., “Pathophysiological mechanisms of genetic absence epilepsy in the rat,” Progress in Neurobiology, vol. 55, pp.27-57, 1998.
Efron, B., “Estimating the error rate of a prediction rule: Improvement on cross-validation,” Journal of the American Statistical Association, vol. 78, no. 32, pp. 316-331, 1983.
Firpi, H., Goodman, E. D., and Echauz, J., “Epileptic seizure detection using genetically programmed artificial features,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 2, pp. 212-224, 2007.
Friedman, J. H., “Regularized discriminat analysis,” Journal of the American Statistics Association, vol. 84, no. 405 , pp. 165-175, 1989.
Ghosh-Dastidat, S., Adeli, H., and Dadmehr, N., “Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 9, pp. 1545-1551, 2007.
Ghosh-Dastidar, S., Adeli, H., and Dadmehr, N., “Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, 2008.
Golub, G., “Numerical methods for solving linear least squares problems,” Numerische Mathematik, vol. 7, pp. 206-216, 1965.
Haas, S. M., Frei, M. G., and Osorio, I., “Strategies for adapting automated seizure detection algorithms,” Medical Engineering & Physics, vol. 29, pp. 895-909, 2007.
Kannathal, N., Choo, M. L., Rajendra Acharya, U., and Sadasivan, P. K., “Entropies for detection of epilepsy in EEG,” Computer Method and Programs in Biomedicine, vol. 80, pp. 187-194, 2005.
Jasper, H. H., “The ten-twenty electrode system of the international federation,” Electroencephalography and Clinical Neurophysiology, pp. 371-375, 1958.
Kossoff, E. H., Ritzl, E. K., Politsky, J. M., Murro, A. M., Smith, J. R., Duckrow, R. B., Spencer, D. D., and Bergey, G. K., “Effect on external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring,” Epilepsia, vol. 45, no. 12, pp. 1560-1567, 2004.
Kim, W.-S., Yoon, Y.-Z., Bae, J.-H., and Soh, K.-S., “Nonlinear characteristics of heart rate time series: influence of three recumbent positions in patients with mild or severe coronary artery disease,” Physiological Measurement, vol. 26, pp. 517-529, 2005.
Litt, B., “Evaluating devices for treating epilepsy,” Epilepsia, vol. 44(Suppl. 7), pp. 30-37, 2003.
Lin., C.T., Wu, R. C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., and Jung, T.-P., “EEG-based drowsiness estimation for safety driving using independent component analysis,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 12, pp. 2726-2737, 2005.
Li, X., Ouyang, G., and Richards, D. A., “Predictability analysis of absence seizures with permutation entropy,” Epilepsy Research, vol. 77, pp. 70-74, 2007.
Matthews, B. W., “Comparison of the predicted and observed secondary structure of T4 phage lysozyme,” Biochim. Biophys, vol. 405, pp.442-451, 1975.
Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehnertz, K., “Seizure prediction: the long and winding road,” Brain, vol. 130, pp. 314-333, 2007.
Manning, J.-P. A., Richards, D. A., and Bowery, N. G., “Pharmacology of absence epilepsy,” TRENDS in Pharmacological Sciences, vol. 24, no. 10, 2003.
Mackenzie, L., Pope, K. J., and Willoughby, J. O., “Physiological and pathological spindling phenomena have similar regional EEG power distributions,” Brain Research, vol. 1008, pp. 92-106, 2004.
Ocak, H., “Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy,” Expert System with Applications, in press.
Ocask, H., “Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm,” Signal Processing, vol. 88, pp. 1858-1867, 2008.
Osorio, I., Frei, M. G., Giftakis, J., Peters, T., Ingram, J., Turnbull, M., Herzog, M., Rise, M. T., Schaffner, S., Wennberg, R. A., Walczak, T. S., Risinger, M. W., and Ajmone-Marsan, C., “Performance reassessment of a real-time seizure-detection algorithm on long ECoG series,” Epilepsia, vol. 43, no. 12, pp.1522-1535, 2002.
Osorio, I., Frei, M. G., Sunderam, S., Giftakis, J., Bhavaraju, N. C., Schaffner, S. F., and Wilkinson, S. B., “Automated seizure abatement in human using electrical stimulation,” Annals of Neurology, vol. 57, pp. 258-268, 2005.
Pincus, S. M., “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Science of the United State of America, vol. 88, pp. 2291-2301, 1994.
Paul, J. S., and Patel, C. B., “Prediction of PTZ-induced seizures using wavelet-based residual entropy of cortical and subcortical field potentials,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 5, pp. 640-648, 2003.
Polat, K., and Güneş, S., “Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals,” Expert Systems with Applications, vol. 34, pp. 2039-2048, 2008.
Richman, J. S., and Moorman, J. Randall Moorman, “Physiological time-series analysis using approximate and sample entropy,” American Journal of Physiology - Heart and Circulatory Physiology, vol. 278, pp. H2039-H2049, 2000.
Rosso, O. A., “Entropy changes in brain function,” International Journal of Psychophysiology, vol. 64, pp. 75-80, 2007.
Rosso, O. A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., and Basar, E., “Wavelet entropy: a new tool for analysis of short duration brain electrical signals,” Journal of Neuroscience Methods, vol. 105, pp. 65-75, 2001.
Shaw, F. Z., “Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats and absence-like seizure activity?” Journal of Neurophysiol, vol. 91, pp.63-77, 2004.
Saab, M. E., and Gotman, J., “A system to detect the onset of epileptic seizures in scalp EEG,” Clinical Neurophysiology, vol. 116, pp. 427-442, 2005.
Schuyler, R., White, A., Staley, K., and Cios, K. J., “Epileptic seizure detection,” IEEE Engineering in Medicine and Biology Magazine, pp. 74-81, 2007.
Srinivasan, V., Eswaran, C., and Sriraam, N., “Artificial neural network based epileptic detection using time-domain and frequency-domain features,” Journal of Medical Systems, vol. 29, no. 6, pp. 647-660, December, 2005.
Srinivasan, V., Eswaran, C., and Sriraam, N., “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 3, pp.288-295, 2007.
Van Hese, P., Martens J-P, Boon P., Dedeurwaerdere S., Lemahieu I., and Van de Walle R., “Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg,” Physics in Medicine and Biology, vol. 48, pp. 1685-1700, 2003.