| 研究生: |
李炯廷 Lee, Chiung-Ting |
|---|---|
| 論文名稱: |
探討系統相關品質對消費者使用購物型APP意圖之影響: 以整合性科技接受模型為基礎 Exploring the Impact of System-related Quality Factors on Consumers' Intention to Use Shopping Applications: Based on UTAUT |
| 指導教授: |
王維聰
Wang, Wei-Tsong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 整合性科技接受模型 、資訊系統成功模型 、APP |
| 外文關鍵詞: | Unified theory of acceptance and use of technology, Information systems success model, APP |
| 相關次數: | 點閱:108 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今行動商務市場競爭激烈,要如何提升使用者願意使用其購物型APP,是一大挑戰,因此許多學者對於如何提升使用意圖皆有深入的探討,而在眾多的科技接受理論中,整合性科技接受模型(Unified Theory of Acceptance and Use of Technology, UTAUT),其對於使用者使用意圖及行為的解釋能力,高達了70%遠大於之前其他接受理論模型。而資訊系統成功模型中,主要影響使用意圖的系統相關品質構面,也是使用者會考量到是否該使用該APP的一個因素,在電子商務及行動商務領域的研究中,眾學者皆認為系統相關品質的好壞,是影響使用意圖的一個關鍵因素,在過往使用意圖的研究中,大部分區分為兩大主流,一部分是透過科技接受模型來探討使用者接受意圖,另一部分是透過系統相關品質探討使用意圖及客戶滿意度,較少的研究會整合此兩部分的模型,故本研究以UTAUT作為基礎,並探討資訊系統成功模型中的系統、資訊及服務品質,如何透過績效預期、努力預期、社會影響與促成條件,對消費者使用購物型APP之意圖的影響。
本研究共收集315份有效問卷,並且結構方程式的部份最小平方法(Partial Least Squares ,PLS)來驗證,研究結果顯示,系統品質與服務品質皆會正向影響使用意圖;而系統品質與資訊品質及服務品質會透過績效預期,間接的影響使用意圖;服務品質會透過促成條件間接的影響使用意圖;績效預期與社會影響及促成條件,也皆會正向的影響使用意圖。期望本研究之結果能彌補過去文獻的不足,並提供購物型APP供應商或開發商在提升使用意圖方面的實務上依據。
Based on the unified theory of acceptance and use of technology (UTAUT), this study adopts on the system, information and service qualities of Information System Success Model (ISSM), to investigate their effects on the intention to use of the users of mobile shopping applications (APP) via the mediation of performance expectancy, effort expectancy, social influence and facilitating conditions.
Data collected from 315 respondents was analyzed using the technique of partial least squares (PLS) to validate our research model. The results show that system quality and service quality have directly positive effects on behavioral intention. System quality, information quality and service quality have indirectly effects on behavioral intention via facilitating conditions. Service quality has an indirect effects on behavioral intention via facilitating conditions. Performance expectancy, social influence and facilitating conditions have the positive effects on behavioral intention.
This study validates the relationship between intention to use and several factors of the application from APP developers. In conclusion, higher system, information, service qualities bring stronger intention to use. Furthermore, providing customers further assistance with the promotion and recommendation of users can significantly increase the intention to use as well.
中文部份
資策會FIND. (2014). 2014行動行銷策略關鍵報告. Retrieved 2015,5,Dec, from http://www.find.org.tw/find/20140918-2014行動消費者趨勢分析-摘要版.pdf
資策會FIND. (2015). 臺灣民眾線上購物經驗. Retrieved 2015,5,Dec, from http://www.find.org.tw/market_info.aspx?k=2&n_ID=8621
蔡宗宏, 許芳銘, & 池文海. (2006). 以 D&M 資訊系統成功模型為基礎發展知識管理系統成功模型之研究. 資管評論, 14(1), 81-112.
蕭文龍. (2013). 統計分析入門與應用:SPSS中文版+PLS-SEM(SmartPLS). 臺北市: 碁峰資訊.
英文部份
Ahn, T., Ryu, S., & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275.
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Ba, S. L., & Pavlou, P. A. (2002). Evidence of the effect of trust building technology in electronic markets: Price premiums and buyer behavior. MIS Quarterly, 26(3), 243-268.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
Balasubramanian, S., Peterson, R. A., & Jarvenpaa, S. L. (2002). Exploring the implications of m-commerce for markets and marketing. Journal of the Academy of Marketing Science, 30(4), 348-361.
Barnes, S. J. (2002). The mobile commerce value chain: analysis and future developments. International Journal of Information Management, 22(2), 91-108.
Bhattacherjee, A. (2002). Individual trust in online firms: Scale development and initial test. Journal of Management Information Systems, 19(1), 211-241.
Buellingen, F., & Woerter, M. (2004). Development perspectives, firm strategies and applications in mobile commerce. Journal of Business Research, 57(12), 1402-1408.
Chang, I.-C., Li, Y.-C., Hung, W.-F., & Hwang, H.-G. (2005). An empirical study on the impact of quality antecedents on tax payers' acceptance of Internet tax-filing systems. Government Information Quarterly, 22(3), 389-410.
Charland, A., & Leroux, B. (2011). Mobile application development: web vs. native. Communications of the ACM, 54(5), 49-53.
Chen, C.-W. D., & Cheng, C.-Y. J. (2009). Understanding consumer intention in online shopping: a respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335-345.
Chin, W. W. (1998). Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16.
Choi, S.-Y., Stahl, D. O., & Whinston, A. B. (1997). The economics of electronic commerce. Indianapolis: Macmillan Technical Publishing.
Clarke, I. (2001). Emerging value propositions for m-commerce. Journal of Business Strategies, 18(2), 133-148.
Cody-Allen, E., & Kishore, R. (2006). An extension of the UTAUT model with e-quality, trust, and satisfaction constructs. Paper presented at the Proceedings of the 2006 ACM SIGMIS CPR conference on computer personnel research: Forty four years of computer personnel research: achievements, challenges & the future.
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
Coursaris, C. K., & Sung, J. (2012). Antecedents and consequents of a mobile website’s interactivity. New Media & Society, 14(7), 1128-1146.
Cyr, D., Head, M., & Ivanov, A. (2009). Perceived interactivity leading to e-loyalty: Development of a model for cognitive–affective user responses. International Journal of Human-Computer Studies, 67(10), 850-869.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of Applied Social Psychology, 22(14), 1111-1132.
DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95.
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30.
Diefenbach, M. A., Weinstein, N. D., & O'Reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 181-192.
eMarketer. (2014). Worldwide Ecommerce Sales to Increase Nearly 20% in 2014. Retrieved 2015,1,June, from http://www.emarketer.com/Article/Worldwide-Ecommerce-Sales-Increase-Nearly-20-2014/1011039
Éthier, J., Hadaya, P., Talbot, J., & Cadieux, J. (2008). Interface design and emotions experienced on B2C Web sites: Empirical testing of a research model. Computers in Human Behavior, 24(6), 2771-2791.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Boston: Addison-Wesley Longman Publishing Co., Inc.
Flurry. (2015). The Asia Report: Leading the Shift from Entertainment to Utility. Retrieved 2015,5,Dec, from http://flurrymobile.tumblr.com/post/122249889285/the-asia-report-leading-the-shift-from
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388.
Frolick, M. N., & Chen, L. D. (2004). Assessing M-commerce opportunities. Information Systems Management, 21(2), 53-61.
Ghosh, A. K., & Swaminatha, T. M. (2001). Software security and privacy risks in mobile e-commerce. Communications of the ACM, 44(2), 51-57.
Gibson, D. (2009). The wayfinding handbook: Information design for public places. New York: Princeton Architectural Press.
Google. (2015). Google Public Data - Smartphone Usage (%). Retrieved 2015,1,June, from http://www.google.com/publicdata/explore?ds=dg8d1eetcqsb1_&ctype=l&met_y=Q12_2&hl=en_US&dl=en_US#!ctype=l&strail=false&bcs=d&nselm=h&met_y=Q12_2&scale_y=lin&ind_y=false&rdim=country&idim=country:TW:US&ifdim=country&tdim=true&hl=en_US&dl=en_US&ind=false
Gruzd, A., Staves, K., & Wilk, A. (2012). Connected scholars: Examining the role of social media in research practices of faculty using the UTAUT model. Computers in Human Behavior, 28(6), 2340-2350.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2010). Multivariate Data Analysis. Upper Saddle River, NJ: Pearson Education.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414-433.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: Conceptual foundations. Journal of Marketing, 60(30), 50-68.
Holzer, A., & Ondrus, J. (2011). Mobile application market: A developer’s perspective. Telematics and Informatics, 28(1), 22-31.
Huang, H., & Lai, H.-H. (2008). Factors influencing the usability of icons in the LCD touchscreen. Displays, 29(4), 339-344.
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
Im, I., Hong, S., & Kang, M. S. (2011). An international comparison of technology adoption Testing the UTAUT model. Information & Management, 48(1), 1-8.
Kalakota, R., & Robinson, M. (2002). M-Business: the race to mobility. New York: McGraw-Hill.
Kalakota, R., & Whinston, A. B. (1996). Frontiers of electronic commerce. Boston: Addison Wesley Longman Publishing Co., Inc.
Kang, J.-Y. M., Mun, J. M., & Johnson, K. K. (2015). In-store mobile usage: Downloading and usage intention toward mobile location-based retail apps. Computers in Human Behavior, 46, 210-217.
Kannan, V. R., & Tan, K. C. (2005). Just in time, total quality management, and supply chain management: understanding their linkages and impact on business performance. Omega, 33(2), 153-162.
Khalifa, M., & Shen, K. N. (2008). Drivers for transactional B2C m-commerce adoption: Extended theory of planned behavior. The Journal of Computer Information Systems, 48(3), 111.
Khanifar, H., Nia, M., Javad, M., Jandaghi, G., Molavi, Z., & Emami, M. (2012). Factors influencing the intendancy of e-banking: An integration of TAM & TPB with e-service quality. Elixir Fin. Mgmt, 46, 8072-8079.
Kim, S. J., Wang, R. J.-H., & Malthouse, E. C. (2015). The Effects of Adopting and Using a Brand's Mobile Application on Customers' Subsequent Purchase Behavior. Journal of Interactive Marketing, 31, 28-41.
Kline, R. B. (2015). Principles and practice of structural equation modeling. New York: NY: Guilford publications.
Kourouthanassis, P. E., & Giaglis, G. M. (2012). Introduction to the special issue mobile commerce: the past, present, and future of mobile commerce research. International Journal of Electronic Commerce, 16(4), 5-18.
Kumar, S., & Zahn, C. (2003). Mobile communications: evolution and impact on business operations. Technovation, 23(6), 515-520.
Kuo, R.-Z., & Lee, G.-G. (2009). KMS adoption: the effects of information quality. Management Decision, 47(10), 1633-1651.
Kuo, Y.-F., & Yen, S.-N. (2009). Towards an understanding of the behavioral intention to use 3G mobile value-added services. Computers in Human Behavior, 25(1), 103-110.
Lee, Y., & Kozar, K. A. (2009). Designing usable online stores: A landscape preference perspective. Information & Management, 46(1), 31-41.
Lian, J.-W., & Yen, D. C. (2014). Online shopping drivers and barriers for older adults: Age and gender differences. Computers in Human Behavior, 37, 133-143.
Lin, J. C.-C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20(3), 197-208.
Mahatanankoon, P., Wen, H. J., & Lim, B. (2005). Consumer-based m-commerce: exploring consumer perception of mobile applications. Computer Standards & Interfaces, 27(4), 347-357.
Maity, M., & Dass, M. (2014). Consumer decision-making across modern and traditional channels: E-commerce, m-commerce, in-store. Decision Support Systems, 61, 34-46.
Mason, R. O. (1978). Measuring information output: a communication systems approach. Information & Management, 1(4), 219-234.
McKinney, V., Yoon, K., & Zahedi, F. M. (2002). The measurement of web-customer satisfaction: An expectation and disconfirmation approach. Information Systems Research, 13(3), 296-315.
Miltgen, C. L., Popovič, A., & Oliveira, T. (2013). Determinants of end-user acceptance of biometrics: Integrating the “Big 3” of technology acceptance with privacy context. Decision Support Systems, 56, 103-114.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Neuman, W. L. (2000). Social research methods: Quantitative and qualitative methods. Boston, MA: Allyn & Bacon.
Nielsen, J., & Budiu, R. (2013). Mobile usability. Berkeley, Calif.: New Riders.
Nielsen, J., & Loranger, H. (2006). Prioritizing web usability. Berkeley, Calif.: New Riders.
Okazaki, S., & Taylor, C. R. (2008). What is SMS advertising and why do multinationals adopt it? Answers from an empirical study in European markets. Journal of Business Research, 61(1), 4-12.
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.
Pardamean, B., & Susanto, M. (2012). Assessing user acceptance toward blog technology using the UTAUT model. International Journal of Mathematics and Computers in Simulation, 1(6), 203-212.
Park, C.-H., & Kim, Y.-G. (2003). Identifying key factors affecting consumer purchase behavior in an online shopping context. International Journal of Retail & Distribution Management, 31(1), 16-29.
Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: a measure of information systems effectiveness. MIS Quarterly, 173-187.
Rayport, J. F., & Jaworski, B. J. (2002). Introduction to E-Commerce. New York: McGraw-Hill.
Saeed, K. A., & Abdinnour-Helm, S. (2008). Examining the effects of information system characteristics and perceived usefulness on post adoption usage of information systems. Information & Management, 45(6), 376-386.
San Martín, H., & Herrero, Á. (2012). Influence of the user’s psychological factors on the online purchase intention in rural tourism: Integrating innovativeness to the UTAUT framework. Tourism Management, 33(2), 341-350.
Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.
Shiau, W.-L., & Luo, M. M. (2012). Factors affecting online group buying intention and satisfaction: A social exchange theory perspective. Computers in Human Behavior, 28(6), 2431-2444.
Shin, D.-H., Shin, Y.-J., Choo, H., & Beom, K. (2011). Smartphones as smart pedagogical tools: Implications for smartphones as u-learning devices. Computers in Human Behavior, 27(6), 2207-2214.
Tayie, S. (2005). Research methods and writing research proposals. Quezon City,Philippines: Pathways to Higher Education.
Taylor, S., & Todd, P. (1995a). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.
Taylor, S., & Todd, P. (1995b). Understanding information technology usage - a test of competing models. Information Systems Research, 6(2), 144-176.
Teo, H.-H., Oh, L.-B., Liu, C., & Wei, K.-K. (2003). An empirical study of the effects of interactivity on web user attitude. International Journal of Human-Computer Studies, 58(3), 281-305.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
Toh, C. H. (2013). Assessing adoption of wikis in a Singapore secondary school: Using the UTAUT model. Paper presented at the Educational Media (ICEM), 2013 IEEE 63rd Annual Conference International Council for.
Tsalgatidou, A., & Pitoura, E. (2001). Business models and transactions in mobile electronic commerce: requirements and properties. Computer Networks, 37(2), 221-236.
Turban, E., Lee, J., King, D., & Chung, H. M. (2000). Electronic commerce: a managerial perspective (Vol. 1). Upper Saddle River: Prentice Hall.
Vance, A., Elie-Dit-Cosaque, C., & Straub, D. W. (2008). Examining trust in information technology artifacts: the effects of system quality and culture. Journal of Management Information Systems, 24(4), 73-100.
Varnali, K., & Toker, A. (2010). Mobile marketing research: The-state-of-the-art. International Journal of Information Management, 30(2), 144-151.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Wang, Y. S. (2008). Assessing e‐commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.
Wang, Y. S., & Liao, Y.-W. (2008). Assessing eGovernment systems success: A validation of the DeLone and McLean model of information systems success. Government Information Quarterly, 25(4), 717-733.
Watson, C., McCarthy, J., & Rowley, J. (2013). Consumer attitudes towards mobile marketing in the smart phone era. International Journal of Information Management, 33(5), 840-849.
Weerakkody, V., El-Haddadeh, R., Al-Sobhi, F., Shareef, M. A., & Dwivedi, Y. K. (2013). Examining the influence of intermediaries in facilitating e-government adoption: An empirical investigation. International Journal of Information Management, 33(5), 716-725.
Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.
Xu, Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: an empirical test in the e-service context. MIS Quarterly, 37(3), 777-794.
Xu, H., Teo, H.-H., Tan, B. C., & Agarwal, R. (2009). The role of push-pull technology in privacy calculus: the case of location-based services. Journal of Management Information Systems, 26(3), 135-174.
Yahoo奇摩. (2015). 2015 Yahoo奇摩電子商務紫皮書報告. Retrieved 2015,5,Dec, from https://marketing.tw.campaign.yahoo.net/emarketing/marketing_dep/PURPLE_BOOK_1020-final.pdf
Yang, Z., Cai, S., Zhou, Z., & Zhou, N. (2005). Development and validation of an instrument to measure user perceived service quality of information presenting web portals. Information & Management, 42(4), 575-589.
Zhao, L., Lu, Y., Zhang, L., & Chau, P. Y. (2012). Assessing the effects of service quality and justice on customer satisfaction and the continuance intention of mobile value-added services: An empirical test of a multidimensional model. Decision Support Systems, 52(3), 645-656.
Zhou, T. (2012). Understanding users’ initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518-1525.
校內:2021-06-23公開