| 研究生: |
林欣怡 Lin, Hsin-Yi |
|---|---|
| 論文名稱: |
用微接觸技術製備肌紅蛋白質的人工抗體模版 Fabricating an artificial antibody film for detecting myoglobin — using microcontact printing method |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 250 |
| 中文關鍵詞: | 肌紅蛋白質 、分子模版 、微接觸技術 、辨識性孔洞 |
| 外文關鍵詞: | molecular imprinting, micro-contact printing, myoglobin, recognition binding site |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
肌紅蛋白質具有多種疾病的指標,尤其是急性心肌梗塞(acute myocardial infarction, AMI)早期的心肌損傷標幟物,血清肌紅蛋白質的升高的幅度和持續時間可以幫助評估梗塞部位和梗塞處的面積大小。如果血清中高達2000 ng / ml,將會引起腎臟方面的併發症,血清肌紅蛋白質濃度越高,死亡率也高,所以肌紅蛋白質的量也可預測死亡率的發生。
目前市面上的檢驗試劑或免疫分析技術,不是只可半定量,就是需要用到不易取得且又昂貴的抗體,檢驗時不但分析的步驟繁雜,抗原抗體的穩定性也不佳,故若使用分子模版為人工抗體取代自然界中的抗體免疫分析應用於肌紅蛋白質的檢測,則期望可解決上述的問題。
本研究主要目的在於最適化以微接觸技術製備出的肌紅蛋白質模版,希望以人工抗體的地位,取代目前市面上只可定性的檢驗試劑,或需要用到不易取得且又昂貴抗體的免疫分析技術,並探討未來發展快速又簡易的生物感測器應用的可能。
實驗結果顯示經由ITC於非均相的滴定實驗及實際使用不同單體製備模版,可由本研究測試的單體中決定組裝肌紅蛋白質模版的最適交聯劑及功能性單體分別為TEGDMA及MMA。TEGDMA高分子膜對肌紅蛋白質有最低親和力及最低肌紅蛋白質吸附量2.37 ± 0.30×10-11 mole / cm2,而MMA與TEGDMA在1:3的條件下製備模版且UV下聚合9小時,對肌紅蛋白質有最高吸附量15.03 ± 0.89 × 10-11 mole / cm2(2645.28 ng / cm2)。當使用酸洗(AcOH)、鹼洗(NaOH)或以不同濃度的胰蛋白脢移除目標分子時,使用2 wt. % SDS和0.6 wt. % NaOH清洗條件,移除率可達72.82 %且imprinting factor為5.82。在探討模版吸附的動力機制中,可求得模版上的專一性吸附的部份Kd為3.4 × 10-7 M,辨識性孔洞n*有7.24 × 10-11 mole / cm2(即模版表面的的active sites);而非專一性吸附的phase 2的Kd2為1.355 × 10-5 M,假性孔洞量n*為9.62 × 10-10 mole / cm2。
肌紅蛋白質模板在使用IgG、HSA、hemoglobin做競爭性吸附時,在獨立蛋白質環境下進行再吸附,Myo-MIP吸附量相於其他蛋白質的莫爾比分別為115.5、230.9及2.5。在雙成份等莫爾濃度下作競爭性分析,對肌紅蛋白質的選擇性分別為94.18 %、98.21 %及61.09 %。
在真實樣品下做模版吸附效能評估,當在經20倍稀釋的血清中肌紅蛋白質總濃度多了50 ng / ml,模板吸附量增加0.63 × 10-11 mole / cm2,而在未經稀釋尿液樣品中,進行再吸附,吸附的imprinting factor可達37.4 ± 3.21。
由此可見,本研究不但成功的製備出的肌紅蛋白質模版,也證明了在真實樣品下感測的可能性,不過在模版選擇性方面,肌紅蛋白質對人體中最多含量的兩種蛋白質(IgG及HSA)選擇性皆可在高達90 %以上,對hemoglobin的選擇性卻不好,這點將會對未來的應用條件有所限制。
Abstract
Myoglobin is known to be an important biological index for the diagnosis of various diseases. Myoglobin tests are done to evaluate a person who has symptoms of acute myocardial infarction (AMI). The serum myoglobin concentration measured over a period, allows the prediction of the position and the area of myocardial infarction. In large quantities, myoglobin can damage the kidneys and break down into toxic compounds, causing kidney failure.
In general, the tests for detecting myoglobin are either indicative (i.e. rapid tests), or they need to use expensive natural antibodies (i.e. clinical immunoassays). Additionally, processes for detecting myoglobin by immunoassay in the clinical setting are usually complicated, as antibody activity is not easy to maintain. Therefore, if MIPs can serve as artificial antibodies able to replace their natural counterparts, we can look forward their application in immunoassays.
The purpose of this research was to optimize the formation of myoglobin-imprinted polymers to be used in micro-contact printing, which has as its ultimate objective the development of a biosensor.
Comparing the Isothermal Titration Calorimeter (ITC) results, obtained in a heterogeneous titration system used to prepare the polymer films with various monomers by UV polymerization for 9 hours, TEGDMA (a crosslinking agent) exhibited the lowest and MMA (a functional monomer) exhibited the highest affinity to myoglobin. The adsorpted quantity of myoglobin on the polymer film prepared with TEGDMA was 2.37 ± 0.30×10-11 mole / cm2. With a ratio of MMA and TEGDMA of 1 to 3, the Myo-MIP appeared to have the highest adsorption quantity, 15.03 ± 0.89 × 10-11 mole/cm2 (2645.28 ng/cm2). For evaluating the removal and imprinting factors of the Myo-MIPs various wash conditions: i.e. acidic, basic, and trypsin extraction methods were investigated. Finally, an extraction solvent comprising of 2 wt. % SDS and 0.6 wt. % NaOH used at 80 ℃ for 30 min was shown to give the highest imprinting factor i.e. 5.82 with 72.82 % myoglobin removal. Scatchard binding plots showed the dissociation constant for the specific binding phase to be 3.4×10-7 M and the theoretical recognition binding site capacity to be 7.24×10-11 mole/cm2; for the non-specific binding phase Kd = 1.355×10-5 M and the non-specific recognition binding site capacity was determined as 9.62×10-10 mole/cm2.
The selectivity binding experiments were carried out in both single protein and binary protein systems. The molar ratio of adsorbed myoglobin to IgG, HSA and hemoglobin was found to 115.5, 230.9 and 2.5 respectively. In binary competition systems, myoglobin selectivity to IgG, HSA and hemoglobin was respectively 94.18 %, 98.21 % and 61.09 %.
Rebinding the template protein in natural biological matrices, i.e. human serum diluted 20 times by phosphate buffer, showed the film to have significant uptake when 50 ng/ml myoglobin was added compared to myoglobin free controls. Furthermore, when re-binding in undiluted urine, the imprinting factor was determined as 37.4 ± 3.21.
This research has resulted in the successful imprinting of myoglobin and proved the possibility of sensing real samples. Comparing IgG and HSA uptake under competitive conditions, the selectivity of the Myo-MIP was 90 %. But the limited selectivity with respect to hemoglobin will limit application in the immediate future.
參考文獻
[1] L. Pauling, "A Theory of the Structure and Process of Formation of Antibodies", Jounal fo the American Chemical Society, vol. 62, pp. 2643-2657, 1940.
[2] L.N. Castro, J. Fernando, F.J. Zuben, "Learning an optimization using the clonal selection principle", IEEE Transactions on Evolutionary Computation, vol. 6(3), pp. 239-251, 2002.
[3] F.H. Dickey, "The preparation of specific adsorbents", Proceedings of the National Academy of Sciences of the Uniited States of America, vol.35, pp. 227-229, 1949.
[4] G. Wulff, A. Sarhan, "Use of polymers with enzyme-analogous structures for the. resolution of racemates", Angewandte Chemie, vol. 11, pp. 341-344, 1972.
[5] G. Wulff, A. Sarhan, k. Zabrocki, "Enzyme-analogue Built Polymers and Their Use for the Resolution of Race mares", Tetrahedron Letters, vol. 44, pp. 4329-4332, 1973.
[6] R. Arshady, K. Mosbach, "Synthesis of Substrate-selective Polymers by Host-Guest Polymerization", Makromolekulare Chemie, vol. 182, pp. 687-692, 1981.
[7] O. Norrlow, M. Glad, K.J. Mosbach, "Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates", Journal of Chromatography, vol. 299(1), pp. 29-41, 1984.
[8] L. Andersson, B. Sellergren, K. Mosbach, "Imprinting of Amino Acid Derivatives in Macroporous Polymers", Tetrahedron Letters, vol. 25(45), pp. 5211-5214, 1984.
[9] L. Andersson, B. Ekberg, and K. Mosbach, "Synthesis of a New Amino Acid Based Cross-Linker for Preparation of Substrate Selective Acrylic Polymers", Tetrahedron Letters, vol. 26(30), pp. 3623-3624,1985.
[10] 分子模印高分子" http://newton.cc.ncu.edu.tw
/~huichen/mip.html", 2006/06/05.
[11] J. Matsui, Y. Miyoshi, 0. Doblhoff-Dier, T. Takeuchi, "A Molecularly Imprinted Synthetic Polymer Receptor Selective for Atrazine", Analytical Chemistry, vol. 67, pp. 4404-4408, 1995.
[12] C. Wulff, J. Vietmeler, H-G. Poll, "Enzyme-analogue Built Polymers, 22. Influence of the Nature of the Crosslinking Agent on the Performance of Imprinted Polymers in Racemic Resolution", Makromolekulare Chemie, vol. 188, pp. 731-740,1987.
[13] M.J. Whitcombe, M.E. Rodrihuez, P.A. Villar, "New Method for the Introduction of Recognition Site Functionality into Polymers Prepared by Molecular Imprinting: Synthesis and Characterization of Polymeric Receptors for Cholesterol", Jounal fo the American Chemical Society, vol. 117, pp. 7105-7111, 1995.
[14] A. Kumar, G. M. Whitesides, "Features of Gold Having Micrometer to Centimeter Dimensions Can Be Formed Through a Combination of StamIpng with an Elastomeric Stamp and an Alkanethiol 'Ink' Followed by Chemical Etching", Applied Physics Letters, vol. 63, pp. 2002-2004, 1993.
[15] A. Kumar, H.A. Biebuyck, G.M. Whitesides, "Patterning SAMs: Applications in Materials Science", Langmuir, vol. 10, pp. 1498-1511, 1994.
[16] J.L. Wilbur, E.Kim, Y. Xia, and G.M. Whitesides, "Lithographic Molding: A Convenient Route to Structures with Sub-micrometer Dimensions", Advanced Materials : the Newsletter of High Performance, vol. 7, pp. 649-652, 1995.
[17] J.L. Wilbur, H.A. Biebuyck, J.C. MacDonald, G.M. Whitesides, "Scanning Force MicroscoIpes Can Image Patterned Self-Assembled Monolayers", Langmuir, vol. 11, pp. 825-831, 1995.
[18] R.J. Jackman, J.L. Wilbur,G.M. Whitesides, "Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing", Science, Vol. 269, pp. 664-666, 1995.
[19] R. Lenigk, M. Carles, NY Ip, NJ Sucher, "Surface Characterization of a Silicon-Chip-Based DNA Microarray", Langmuir, vol. 17, pp. 2497-2501, 2001.
[20] L.A. Chrisey, G.U. Lee, C.E. O’Ferrall, "Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films", Nucleic Acids Research, vol. 24(15), pp. 3031-3039, 1996.
[21] D. Zhou, K. Sinniah, C. Abell, T. Rayment, "Label-free detection of DNA hybridization at the nanoscale: a highly sensitive and selective approach using atomic-force microscopy", Angewandte Chemie International Edition, vol. 42(40), pp. 4934–4937, 2003.
[22] X.Z. Feng, C.J. Roberts, D.A. Armitage, M.C. Davies, S.J.B. Tendler, S. Allen, P.M. Williams, "Investigation of microcontact transfer of proteins from a selectively plasma treated elastomer stamp by fluorescence microscopy and force microscopy", The Analyst, vol. 126, pp. 1100-1104, 2001.
[23] M. Mrksich, G.M. Whitesides, "Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors", Trends in Biotechnology, vol. 13, pp. 228-236, 1995.
[24] S.P.A. Fodor, J.L. Read, M.C. Iprrung, L. Stryer, A.T. Lu, D. Solas, "Light-directed, spatially addressable parallel chemical synthesis", Science, vol. 251(4995), pp. 767-773, 1991.
[25] N. Patel, R. Padera, G.H.W. Sanders, S.M. Cannizzaro, M.C. Davies, R. Langer, C.J. Roberts, S.J. Tendler, P.M. Williams, K.M. Shakesheff, "Spatially controlled cell engineering on biodegradable polymer surfaces", FASEB Journal, vol. 12(14), pp. 1447-1454, 1998.
[26] N. Sneshkoff, K. Crabb, J.J. BelBruno, "An improved molecularly imprinted polymer film or recognition of amino acids, "Journal of Applied Polymer Science, vol. 86, pp. 3611-3615, 2002.
[27] Y.L. Liao, W. Wang, B. Wang, "Buildimg fluorescent sensor by template polymerization: The preparation of a fluorescent sensor for L-tryptophan", Bioorganic Chemistry, vol. 27, pp. 463–476, 1999.
[28] L. Zhang, G. Cheng, C. Fu, Molecular selectivity of tyrosine-imprinted polymers prepared by seed swelling and suspension polymerization, Polymer International, vol. 51, pp. 687-692, 2002.
[29] B.R. Hart, K.J. Shea, "Synthetic peptide receptors: molecularly imprinted polymers for the recognition of peptides using peptide-metal interactions", American Chemical Society, vol. 123, pp. 2072-2073, 2001.
[30] B.R. Hart, K.J. Shea, "Molecular Imprinting for the Recognition of N-Terminal Histidine Peptides in Aqueous Solution, " Macromolecules, vol. 35, pp. 6192-6201, 2002.
[31] M.M. Titirici, A.J. Hall, B. Sellergren, "Hierarchical Imprinting Using Crude Solid Phase Peptide Synthesis Products as Templates", American Chemical Society, vol. 15, pp. 822-824, 2003.
[32] C.T. Chen, H. Wagner, W. C. Still, "Fluorescent, Sequence-Selective Peptide Detection by Synthetic Small Molecules", Science, vol. 279, pp. 851-853, 1998.
[33] H. Asanuma, T. Ban, S. Gotoh, T. Hishiya, M. Komiyama, "Hydrogen bonding in water by poly(vinyldiaminotriazine) for the molecular recognition of nucleic acid bases and their derivatives", Macromolecules, vol. 31, pp. 371-377. 1998.
[34] S. Michal, B. Boguslaw, "Molecularly imprinted polymers: A new tool for separation of steroid isomers", Journal of Separation Science, vol. 27(10), pp. 837-842, 2004.
[35] C.C. Huval, M.J. Bailey, W.H. Braunlin, S. Randall Holmes-Farley, W.H. Mandeville, J.S. Petersen, S.C. Polomoscanik, R.J. Sacchiro, X.Chen, P.K. Dhal, "Novel Cholesterol Lowering Polymeric Drugs Obtained by Molecular Imprinting", Macromolecules, vol. 34, pp. 1548-1550, 2001.
[36] P. Paraskevi, K. Peter, "Biomimetic glucose recognition using molecularly imprinted polymer hydrogels", Biomaterials, vol. 25(10), pp. 1969-1973, 2004.
[37] E. Arzu, D. Adil, O. Ali, S. Ridvan, "Molecularly imprinted ligand-exchange recognition assay of glucose by quartz crystal microbalance", Biosensors and Bioelectronics, vol. 20(11), pp. 2197-2202, 2005.
[38] H. Shi, W.B. Tsai, M.D. Garrison, S. Ferrari, D. Ratner, "Template-imprinted nanostructured surfaces for protein recognition", Nature, vol. 398, pp. 593-597, 1999.
[39] K. Hirayama, Y. Sakai, K. Kameoka, "Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique," Journal of Applied Polymer Science, vol. 81, pp. 3378-3387, 2001.
[40] A. Bossi, S.A. Ipletsky, E.V. Ipletska, P.G. Righetti, A.P.F. Turner, "Surface-grafted molecularly imprinted polymers for protein recognition", American Chemical Society, vol. 73, pp. 5281-5286, 2001.
[41] S.H. Ou, M.C. Wu, T.C. Chou, C.C. Liu, "Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme," Analytica Chimica Acta, vol. 504, pp. 163-166, 2004.
[42] T.Y. Guo, Y.Q. Xia, J. Wang, M.D. Song, B.H. Zhang, "Chitosan beads as molecularly imprinted polymer matrix for selective separation of proteins," Biomaterials, vol. 26, pp. 5737-5745, 2005.
[43] T.Y. Guo, Y.Q. Xia, G.J. Hao, M.D. Song, B.H. Zhang, "Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads, Biomaterials," vol. 25, pp. 5905-5912, 2004.
[44] D.M. Hawkins, D. Stevenson, S.M. Reddy, "Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs)", Analyical Chinica Acta, vol. 542, pp. 61-65, 2005.
[45] F.L. Dickert, O. Hayden, "Bioimprinting of polymers and sol-Gel phases. Selective detection of yeasts with imprinted polymers", Analytical Chemistry, vol. 74(6), pp. 1302-1306, 2002.
[46] A. Kugimiya, T. Takeuchi, "Molecularly Imprinted Polymer-Coated Quartz Crystal Microbalance for Detection of Biological Hormone", Electroanalysis, vol. 15, pp. 1158-1160, 1999.
[47] S.A. Ipletsky, K. Karim,a E.V. Ipletska,a C.J. Day, K.W. Freebairn, C. Leggeb, A.P.F. Turnera, "Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach", Analyst, vol. 126, pp. 1826–1830, 2001.
[48] P. Martin, I.D. Wilson, G.R. Jones, "Optimisation of procedures for the extraction of structural analogues of propranolol with molecular imprinted polymers for sample preparation", Journal of Chromatography A, vol. 889, pp. 143–147, 2000.
[49] J. Matsui, K. Fujiwara, T. Takeuchi, "Atrazine-Selective Polymers Prepared by Molecular Imprinting of Trialkylmelamines as Dummy Template Species of Atrazine", Analytical Chemistry, vol. 72, pp. 1810-1813, 2000.
[50] M. Siemann, L.I. Andersson, K. Mosbach, "Selective Recognition of the Herbicide Atrazine by Noncovalent Molecularly Imprinted Polymers", Journal of Agricultural and Food Chemistry, vol. 44, pp. 141-145, 1996.
[51] F.L. Dickert, O. Hayden, "Bioimprinting of polymers and sol-Gel phases. Selective detection of yeasts with imprinted polymers," Analytical Chemistry, vol. 74(6), pp. 1302-1306, 2002.
[52] C. Alexander1, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I.A. Nicholls, J. Mahony, J. Michael, Whitcombe, "Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003," Journal of Molecular Recognition, vo1. 9(2), pp. 106-80, 2006.
[53] K. Karim, F. Breton, R. Rouillon, E.V. Ipletska, A. Guerreiro, I. Chianella, A. Sergey, Ipletsky, "How to find effective functional monomers for effective molecularly imprinted polymers", Advanced Drug Delivery Reviews, vol. 57, pp. 1795-1808, 2005.
[54] I.A. Nicholls, "Thermodynamic Considerations for the Design of and Ligand Recognition by Molecularly Imprinted Polymers", Chemistry Letters, pp. 1035-1036, 1995.
[55] I.A. Nicholls, "Towards the rational design of molecularly imprinted polymers", Journal of Molecular Recognition, vol. 11, pp. 79–82, 1998.
[56] V.A. Lee, R.G. Craig, F.E. Filisko, R. Zand, "Microcalorimetry of the adsorption of lysozyme onto polymeric substrates", Journal of Colloid and Interface Science, vol. 288, pp. 6–13, 2005.
[57] W.P. Fish, J. Ferreira, R.D. Sheardy, N.H. Snow, "Rational Design of an Imprinted Polymer: Maximizing Selectivity by Optimizing the Monomer–Template Ratio for a Cinchonidine MIP, Prior to Polymerization, Using Microcalorimetry", Journal of Liquid Chromatography & Related Technologiesw, vol. 28, pp. 1–15, 2005.
[58] J. Rick, T.C. Chou, "Enthalpy changes associated with protein binding to thin films", Biosensors and Bioelectronics, vol. 20, pp. 1878–1883, 2005.
[59] H. Asanuma, T. Hishiya, M. Komiyama, "Direct Evidences for the Hydrogen Bonding in Water by Polymeric Receptors Carrying Diaminotriazine", Chemistry Letter, pp. 1087-1088, 1998.
[60] J. Zhou, X.W. He, "Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine", Analytica Chimica Acta, vol. 381, pp. 85-91, 1999.
[61] X. Dong, H. Sun, X. Lue, H. Wang, S. Liu, N. Wang, "Separation of ephedrine stereoisomers by molecularly imprinted polymers. Influence of synthetic conditions and mobile phase compositions on the chromatographic performance", Analyst, vol. 127, pp. 1427-1432, 2002.
[62] J. Svenson, J.G. Karlsson, I.A. Nicholls, "1H nuclear magnetic resonance study of the molecular imprinting of (-)-nicotine: template self-association, a molecular basis for cooperative ligand binding", Journal of Chromatography A, vol. 1024, 39-44, 2004.
[63] H.S. Andersson, I.A. Nicholls1, "SpectroscoIpc Evaluation of Molecular Imprinting Polymerization Systems", Bioorganic Chmeistry, vol. 25, pp. 203-211, 1997.
[64] J. Svenson, H.S. Andersson, S.A. Ipletsky, I.A. Nicholls, "SpectroscoIpc studies of the molecular imprinting self-assembly process", Journal of Molecular Recognition, vol. 11, pp. 83–86, 1998.
[65] M.C. Norell, H.S. Andersson, I.A. Nicholls, "Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism", Journal of Molecular Recognition, vol. 11, pp. 98–102, 1998.
[66] T.P. O’Brien, N. Grinberg, G. Bicker, J. Wyvratt, N.H. Snow, "Evaluation of the Origins of the Selectivity of Polymers Imprinted with a HIV Protease Inhibitor using Infrared Spectroscopy and High Performance Liquid Chromatography", Enantiomer, vol. 7, pp. 139–148, 2002.
[67] E. Ipletska, S. Ipletsky, K. Karim, E. Terpetschnig, A. Turner, "Biotin-specific synthetic receptors prepared using molecular imprinting", Analytica Chimica Acta, vol. 504, pp. 179-183, 2004.
[68] L. Wu, Y. Li, "Ipcolinamide–Cu(Ac)2-imprinted polymer with high potential for recognition of Ipcolinamide–copper acetate complex", Analytica Chimica Acta, vol. 482, pp. 175–181, 2003.
[69] W. Donga, M. Yan, M. Zhang, Zh. Liu, Y. Li, "A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer", Analytica Chimica Acta, vol. 542, pp. 186-192, 2005.
[70] 吳佳怡, "分子模印高分子之製備", 碩士論文, 1993.
[71] H.S. Andersson, J.G. Karlsson, S.A. Ipletsky, "Study of the nature of recognition in molecularly imprinted polymers, II. Influence of monomertemplate ratio and sample load on retention and selectivity", Journal of Chromatography A, vol. 848, pp. 39-49, 1999.
[72] O. Bruggemann, K. Haupt, L. Ye, E. Yilmaz, K. Mosbach, "New configurations and applications of molecularly imprinted polymers", Journal of Chromatography A, vol. 889, pp. 15-24, 2000.
[73] G. Wulff, B. Heide, G. Helfmeier, "Molecular recognition through the exact placement of functional-groups on rigid matrices via a template approach", Journal of the American Chemical Society, vol. 108, pp. 1089-1091, 1986.
[74] K. Mosbach, O. Ramstrom, "The emerging technique of molecular imprinting and its future impact on biotechnology", Biotechnology, vol. 14. pp. 163-170, 1996.
[75] L. Ye, K. Mosbach, "Polymers recognizing biomolecules based on a combination of molecular imprinting and proximity scintillation: a new sensor concept", Journal of the American Chemical Society, vol. 123, pp. 2901-2902, 2001.
[76] K. Mosbach, K. Haupt, X.C. Liu, P.A.G. Cormack, O. Ramström, "Molecular Imprinting: Status Artis et Quo Vadere", ACS Symposium Series, vol. 703, pp. 29-48, 1998.
[77] A. Rachkov, N. Minoura, "Towards molecularly imprinted polymers selective to peptides and proteins. The eIptope approach", Biochimica et Biophysica Acta, vol. 1544, pp. 255-266, 2001.
[78] H.Y. Wang, T. Kobayashi, N. Fujii, "Molecular imprint. membranes prepared by the phase inversion preciIptation technique", Langmuir, vol. 12. pp. 4850-4856, 1996.
[79] D. Kriz, O. Ramstrom, K. Mosbach, "Molecular imprintingbased biomimetic sensors could provide an alternative to often unstable biosensors for industry,medicine and environmental analysis", Analytical Chemistry, vol. 69, pp. 345A-349A, 1997.
[80] P. Turkewitsch, B. Wandelt, G.D. Darling, W.S. Powell, "Fluorescent Functional Recognition Sites through Molecular Imprinting. A Polymer-Based Fluorescent Chemosensor for Aqueous camp", Analytical Chemistry, vol. 70, pp. 2025-2030, 1998.
[81] D. Kriz, C.B. Kriz, L.I. Andersson, K. H. Mosbach, "Thin-Layer Chromatography Based on the Molecular Imprinting Technique", Analytical Chemistry, vol. 66, pp. 2636-2638, 1994.
[82] D. Kriz, O. Ramstroem, A. Svensson, K. Mosbach, "A Biomimetic Sensor Based on a Molecularly Imprinted Polymer as a Recognition Element Combined with Fiber-Optic Detection", Analytical Chemistry, vol. 67(13), pp. 2142-2144, 1995.
[83] K.A. Grant, J.H. Dickinson, M.J. Payne, S. Campbell, M.D. Collins, R.G. Kroll, "Use of the polymerase chain reaction and 16S rRNA sequences. for the raIpd detection of Brochothrix spp. in foods", Journa lof Applied Bacteriology, vol. 74(3), pp. 260-267, 1993.
[84] K.S. Cudjoe, L.I. Thorsen, T. Sørensen, J. Reseland, O. Olsvik, P.E. Granum, "Detection of Clostridium perfringens type A enterotoxin in faecal and food samples using immunomagnetic separation (IMS)-ELISA", International journal of food microbiology, vol. 12(4), pp. 313-321, 1991.
[85] J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.N. Nilsen, P.C. Mørk, P. Stenstad, E. Hornes, Ø. Olsvik, "Preparation and application of new monosized polymer particles", Progress in Polymer Science, vol. 17, pp. 87-161, 1992.
[86] M.T. Muldoon, L.H. Stanker, "Polymer Synthesis and Characterization of a Molecularly Imprinted Sorbent Assay for Atrazine", Journal of Agricultural and Food Chemistry, vol. 43, pp. 1424-1427, 1995.
[87] S.A. Ipletsky, E.V. Ipletskaya, K. Yano, I. Karube, "Atrazine sensing by molecularly. imprinted membranes", Biosensors & Bioelectronics, vol. 10, pp. 959-964, 1995.
[88] G. Vlatakis, L.I. Andersson, R. Miiller, K. Mosbach, "Drug assay using antibody mimics made by molecular imprinting", Nature, vol. 361, pp. 645-647, 1993.
[89] A.G. Mayes, L.I. Andersson, K. Mosbach, "Sugar binding poly-mers showing high anomeric and eIpmeric discrimination by non-covalent molecular imprinting", Analytical Biochemistry, vol. 222, pp. 483-488, 1994.
[90] L.I. Andersson, R. Müller, G. Vlatakis, K. Mosbach, "Mimics of the binding sites of oIpoid receptors obtained by molecular imprinting of enkephalin and morphine", Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 4788-4792, 1995.
[91] L.I. Andersson, "Application of Molecular Imprinting to the Development of Aqueous Buffer and Organic Solvent Based Radioligand Binding Assays for (S)-Propranolol", Analytical Chemistry, vol. 68, pp. 111-117, 1996.
[92] S.A. Ipletsky, Yu.P. Parhometz, T.L. Panasyuk, A.V. El'skaya, "Sensors for low-weight organic molecules based on molecular imprinting technique". Sensors and Actuators. B., 18-19, pp. 629-631, 1994.
[93] E. Hedborg, F. Winquist, I. Lundstrom, L. Andersson, K. Mosbach, "Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices", Sensors and Actuators A: Physical, vol. 37-38, pp. 796-799, 1993.
[94] S. A. Ipletsky, E.V. Ipletskaya, T.L. Panasyuk, A.V. El'skaya, R. Levi, I. Karube, G. Wulff, "Imprinted membranes for sensor technology - opposite behavior of covalently and noncovalently imprinted membranes", Macromolecules, vol. 31, pp. 2137-2140, 1998.
[95] J. Kost, R. Langer, "Response polymer systems for controlled delivery of therapeutics", Trends in Biotechnology, vol. 10, pp. 127-131, 1992.
[96] M. Yoshikawa, J. Izumi, T. Kitao, S. Sakamoto, "Alternative molecularly imprinted polymeic membranes from a tetrapeptide residues consisting of D- or L-amino acids", Macromolecular RaIpd Communications, vol. 18, pp. 761-767, 1997.
[97] D.C. Harris, W.H. Freeman and Company, "Exploring chemical analysis" , 3rd ed, U.S.A., pp. 411, 2004.
[98] T. A. Sweden, "Thermometric 2250-series."
[99] F.Y. Lin, W.Y. Chen, L.C. Sang, "Microcalorimetric studies of the interactions of lysozyme with immobilized metal ions: Effects of ion, pH value, and salt concentration," Journal of Colloid and Interface Science, vol. 214, pp. 373-379, 1999.
[100] 陳慶松, "微卡計在固液吸附機制之研究-嵌印高分子及離子交換樹脂在近等電點時的吸附機制", 碩士論文, 國立中央大學化學工程研究所, 2000.
[101] E. Freire, O.L. Mayorga, M. Straume, "Isothermal Titration Calorimetry", Analytical Chemistry, vol. 62, pp. 950A-959A, 1990.
[102] R.Y. Lin, W.Y. Chen, "The biological membrane applications of isothermal titration calorimetry", Journal of Chinese Colloid and Interface Society, vol. 18, pp. 119-128, 1995.
[103] T. Wisemen, S. Williston, J.F. Brandts, L.N. Lin, "RaIpd Measurement of Binding Constants and Heats of Binding Using a New Titration Calorimeter", Analytical Biochemistry, vol. 179, pp. 131-137, 1989.
[104] G. Ramsay, R. Prabhu, E. Freire, "Direct Measurement of the Energetics of Association between Myelin Basic Protein and Phosphatidylserine Vesicles", Biochemistry, vol. 25, pp. 2265-2270, 1986.
[105] P. Backman, M. Bastos, L.E. Briggner, S. Hagg, D. Hallen, P. Lonnro, S.O. Nilsson, G. Olofsson, A. Schon, J. Suukuusk, C. Teixeira, I. Wadso, "A System of Microcalorimeters", Pure and Applied Chemistry. Chimie Pure et Appliquee, vol. 66, pp. 375-382, 1994.
[106] Y. Lu, C. Li, X. Wang, P. Sun, Xianghua Xing, "Influence of polymerization temperature on the molecular recognition of imprinted polymers", Journal of Chromatography B, vol. 804, pp. 53–59, 2004.
[107] G. Binnig, C.F. Quate, Ch. Gerber, "Atomic Force Microscope", Physical Review Letters, vol. 56, pp. 930-933, 1986.
[108] " http://web.mit.edu/cortiz/www/afm.gif", 2006/06/10.
[109] J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, D.C. Phillips, and V.C. Shore, "Structure of myoglobin: A three-dimensional fourier synthesisat 2 angstrom resolution", Nature, vol. 185, pp. 422–427, 1960.
[110] M.F. Perutz, M.G. Rossmann, A.F. Cullis, H. Muirhead, G . Will, and A.C. T. North, "Structure of myoglobin: A three-dimensional fourier synthesis at 5.5 angstrom resolution, obtained by x-ray analysis", Nature, vol. 185, pp. 416–422, 1960.
[111] A. Arkhipov, R. Braun, Y. Yin, "Case Study : Myoglobin", 12. Dec. 2005.
[112] D.A. Gornall, S.N. Roth, "Serial myoglobin quantitation in the early assessment of myocardial damage: a clinical study", Clinical Biochemistry, vol. 29, pp. 379-384, 1996.
[113] D.W. Mercer, "A historical background in cardiac markers", Medical Laboratory Observer, vol. 28(7), pp. 45-51, 1996.
[114] A.H. Wu, Y.J. Feng, J.H. Contois, S. Pervaiz, "Comparison of myoglobin, creatine kinase-MB, and cardiac troponin I for diagnosis of acute myocardial infarction", Annals Of Cliniclal and Laboratory Science, vol. 26, pp. 291-300, 1996.
[115] 福島醫檢資訊網, "http://www.supermt.com.tw/MTindex-1.htm", 2006/05/30.
[116] 中華檢驗網, "http://www.chinalabnet.co?id=830&cid= m/show.a
spx89", 2006/06/01.
[117] 肖玉艷, 邢燕芳, 繩建敏, "肌红蛋白測定在急性心肌梗塞診斷中的臨床意義",標記免疫分析與臨床, vol. 2(7), 2000.
[118] P.M. Clarkson, "Worst case scenarios:exertional rhabdomyolysis and acute renal failure", Sports Science Exchange, Vol. 4(42), 1993.
[119] A.S. Penn, "Myoglobinuria", 1986, In: A.G. Engel and B.Q. Banker, (Eds) Myology, Vol.2, publisher: McGraw-Hill, New York, pp. 1785-1805.
[120] 尚捷醫學檢驗專業網" http://www.accuspeedy.com.tw/A16_sear
ch _items/024_urine_analysis/230_Myoglobin.htm ", 2006/05/30.
[121] 洪欣怡, 蔡榮川, 蔡偉博, "疾病檢驗讓病原體無所遁形", 科學發展, vol. 401, pp.42-47, 2006.
[122] 陳筱淇, The study of fabricating lysozyme –imprinted polymers by a noval microcontact printing method. 碩士論文, 國立成功大學, 2005.
[123] 陳威志, To design the creatinine imprinted polymers based on the information from microcalorimeter. 碩士論文, 國立成功大學, 2004.
[124] 周佩蓁, Development a micro-contact imprinting technology to raIpdly detect inflammation biomarker-C-reactive protein. 碩士論文, 國立成功大學, 2005.
[125] D. M. Hawkins, D. stevenson, S. M. Reddy, "Investigation of protein imprinting in hydrogel-based molecularly imprinted polymers (HydroMIPs)", Analytica Chimica Acta, vol. 542, pp. 61–65, 2005.
[126] W. Norde, J. Lyklema, "Thermodynamics of protein adsorption: Theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polysty-rene surfaces", Journal of Colloid and Interface Science, vol. 71, pp. 350-366, 1979.
[127] 化學鍵理論" http://content.edu.tw/senior/chemistry/tp_sc/content
1/number3/2/10-1.htm ", 2006/05/30.
[128] C.Y. Hsu, H.Y. Lin, B.T. Wu, T.C.Chou, "Styrene-containing Molecularly Imprinted Polymers Enhance the Recognition of Ribonuclease A", Biosensors and Bioelectronics. (in press)
[129] H. Dong, A.J. Tong, L.D. Li, "Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection", Spectrochimica Acta Part A, vol. 59, pp. 279-284, 2003.