| 研究生: |
蔡典修 Tsai, Tien-Hsiu |
|---|---|
| 論文名稱: |
以評估式動態輪廓線模型及知識源為基礎的影像分割方法 Image Segmentation Methods Using Evaluation-Based Active Contour Model and Knowledge Source |
| 指導教授: |
陳立祥
Chen, Lih-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 影像分割 、輪廓線評估 、動態輪廓線模型 、膝蓋軟骨 、知識源 |
| 外文關鍵詞: | image segmentation, contour evaluation, active contour model, Knowledge Source, knee cartilage |
| 相關次數: | 點閱:144 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學影像分割是重建器官三維模型之前的必備工作,但並不是一件容易的工作。本論文中提出的「輪廓線評估系統」、「評估式動態輪廓線模型」與「知識源」其目的就是要協助醫學影像分割工作的進行。
輪廓線評估系統是利用相鄰影像之間影像特徵變化不大的特性,將待測輪廓線與參考輪廓線進行分段並比較,以決定其正確性。此機制應用於動態輪廓線模型中,可以幫助其尋找最佳的影像邊緣,提升變形的正確性,協助使用者有效率地繪製器官輪廓線。
本論文後半利用影像與目標器官的已知特徵,設計針對該器官的自動化分割機制。我們將這個做法稱為利用「知識源」的影像分割。這部份將以手肘骨骼與股骨軟骨為例,說明其設計過程與實作成果,並且以股骨軟骨的辨識結果進一步進行後續應用,包含軟骨厚度計算、顯示與其他應用。
Medical image segmentation is a necessary task before reconstructing a 3D organ model, but not an easy task. This thesis describes how the Contour Evaluation System, the Evaluation-Base Active Contour Model, and the Knowledge Source are used to segment medical image correctly and efficiently.
The Contour Evaluation System calculates the similarity between the reference contour and the evaluated contour to determine the accuracy of the evaluated contour, because the image features between neighbor images are expectedly similar. This mechanism can help the Active Contour Model to find correct image edges, improve the deformation result, and assist users to draw the organ contours more efficiently.
The Knowledge Source is a mechanism designed to generate organ contours automatically when we have the pre-knowledge about the source images and the target organ. We take the elbow bone and knee cartilage examples to demonstrate the design procedures and implement results. We also make use of the cartilage recognition result for follow-up application, such as cartilage thickness measurement and display.
[1]: Canny, J. F., "A computational approach to edge detection," IEEE Trans, Pattern Analysis and Machine Intelligence, Vol. 9, pp. 679-698, Nov. 1986
[2]: Chen, Y. C., "An Image Recognition System Based on a Blackboard Architecture," National Cheng Kung University, 2008.
[3]: Deng, S. T., "Surface Construction and Manipulation of 3D Medical Images," National Cheng Kung University, 2007.
[4]: Gonzalez, R. C., & Woods, R. E., "Digital Image Processing," Second Edition, Prentice-Hall Inc., 2002.
[5]: Heuer, F., Sommers, M., Reid III, J. B., and Bottlang, M.,“Estimation of cartilage thickness from joint surface scans: Comparative analysis of computational methods.” In ASME, pages 569–570, 2001.
[6]: Hsu, H. L., "The Application of the Contour Evaluation System on the Medical Images", National Cheng Kung University, 2006.
[7]: Kang, Y., Engelke, K., & Kalender, W. A., "A New Accurate and Precise 3-D Segmentation Method for Skeletal Structures in Volumetric CT Data”, IEEE Trans. Med. Imag., vol. 22, no.5, pp. 586-598, May 2003.
[8]: Kass, M., Witkin, A., & Terzopoulos, D., "Snake: Active Contour Models," International Journal of Computer Vision, pp.321-331, 1988
[9]: Ke, P. Y., "3D Reconstruction of human body system and interactive medical education game," National Cheng Kung University, 2006.
[10]: Lobregt, S., & Viergever, M. A., "A Discrete Dynamic Contour Model," IEEE Trans. on Medical Imaging, Vol. 14, No. 1, pp. 12-24, Mar. 1995
[11]: Lorensen, W. E., & Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, v.21 n.4, p.163-169, July 1987
[12]: Lynch, John A., Zaim, S., Zhao, J., Peterfy, C. G., Genant, H. K., "Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation," Proc. SPIE Vol. 4322, p. 431-439, Medical Imaging 2001.
[13]: Meyer, F., "Contrast feature extraction." In: J.L. Chermant Editor, Quantitative Analysis of Microstructures in Material Sciences, Biology and Medicine Riederer Verlag, Stuttgart, Germany, 1978.
[14]: Meyer, F., "Color image segmentation." In Proceedings of the International Conference on Image Processing and its Applications, pages 303--306, 1992.
[15]: Mlejnek, M., Vilanova, A., & Gröller, M. E., "Interactive Thickness Visualization of Articular Cartilage," In Proceedings of Visualization 2004, pages 521-527, October
[16]: Niblack, W., "An Introduction to Digital Image Processing," Upper Saddle River, NJ: Prentice-Hall, ch. 5, 1986.
[17]: Ruzon, M. A., Tomasi, C., "Color Edge Detection with the Compass Operator," cvpr, p. 2160, 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'99) - Volume 2, 1999
[18]: Ruzon, M. A., Tomasi, C., "Corner Detection in Textured Color Images," In 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, V. 2, pp. 1039-1045, September 1999
[19]: Ruzon, M. A., Tomasi, C., "Edge, Junction, and Corner Detection Using Color Distributions," In IEEE Transactions on Pattern Analysis and Machine Intelligence, V. 23, No. 11, pp. 1281-1295, November 2001
[20]: Samuel C. Lee, Yiming Wang, & Elisa T. Lee, “Compactness Measure of Digital Shapes”, IEEE, 2004.
[21]: Theodoridis, S., & Koutroumbas, K.,“Pattern Recognition”Second Edition, Elsevier Inc., 2003.
[22]: Wang, L. I., & Greenspan, M., "Validation of Bone Segmentation and Improved 3-D Registration Using Contour Coherency in CT Data", IEEE Trans. Med. Imag., vol. 25, no.3, pp. 324-334, March 2006.
[23]: Yang, C. M., "The Applications of the Automatic Contour Recognition Mechanism on the Medical," National Cheng Kung University, 2007.