| 研究生: |
范純聖 Fan, Chun-Sheng |
|---|---|
| 論文名稱: |
微型胞膜電穿孔基因轉殖晶片最佳化之研究 A Study on Optimization of In-Vitro Electroporated Microchip for Gene Transfection |
| 指導教授: |
林裕城
Lin, Yu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 基因轉殖、奈米粒子、微機電製程技術、田口式品質工程方法 |
| 外文關鍵詞: | gene delivery, microfabrication, nanoparticle |
| 相關次數: | 點閱:74 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發出懸浮式與貼附式兩款微型胞膜電穿孔晶片,晶片製程採用微機電製程技術在玻璃基材上製作出薄膜電極,並利用高分子材料定義出反應槽;基因轉殖實驗上採用pEGFP-N1質體與自製的水相金奈米修飾DNA(T21);本研究中應用田口式品質工程方法來提高轉殖率,並藉以求出各晶片之最佳轉殖的實驗參數。
在懸浮式晶片實驗方面,藉由二維晶片電場穩態數值模擬與田口式轉殖實驗相互搭配下,驗證出電極尖端放電現象於胞膜電穿孔實驗,的確會增加細胞之基因轉殖效果,經田口式實驗方法求得對於小鼠纖維母細胞(NIH-3T3)的最佳轉殖參數為:1. 晶片電極為50µm與其間距,2. pEGFP-N1濃度為80µg/mL,3. 脈衝電壓為6V,4. 電脈衝數為2Pulse;經確認實驗可得平均轉殖率為40.36﹪。
在貼附式晶片實驗方面,藉由三維晶片電泳電場穩態數值模擬與田口式轉殖實驗相互搭配下,驗證出每次電脈衝之前,先施以預濃縮電壓,使得晶片表面上的質體濃度增加,將可提升轉殖效果,經田口式實驗方法求得對於人類皮膚基底細胞癌細胞(BCC)的最佳轉殖參數為:1. 晶片電極為50µm與其間距,2. pEGFP-N1濃度為80µg/mL,3. 脈衝電壓為6V,4. 電脈衝數為2Pulse;經確認實驗可得平均轉殖率為35.89﹪。
實驗中,也利用上述藉由田口式實驗法求得的最佳轉殖參數進行水相金奈米修飾DNA(T21)轉殖;在懸浮式晶片實驗方面,NIH-3T3與BCC細胞株經懸浮式晶片最佳轉殖實驗參數;於紫外光-可見光(UV-Vis)光譜分析發現只有實驗組有粒徑13nm的金奈米粒子特有520nm波長吸收,於TEM電顯中,也只有在實驗組找到了金奈米的蹤跡,顯示成功的將金奈米修飾DNA(T21)轉殖進入細胞中。在貼附式晶片實驗方面,NIH-3T3與BCC細胞株經貼附式晶片最佳轉殖實驗參數;於UV-Vis光譜分析發現只有實驗組有粒徑13nm的金奈米粒子特有520nm波長吸收,且有外加電泳再行胞膜電穿孔的520nm波長吸收峰值高於純胞膜電穿孔;於TEM電顯中,也只有在實驗組找到了金奈米的蹤跡,不只顯示成功的將金奈米修飾DNA(T21)轉殖進入細胞中,更再次驗證電泳預濃縮,將可提升轉殖效果。
Au nanoparticles modified with 21-base thiolated-oligonucleotides or pEGFP-N1 have been evaluated as delivery vehicles for the development of a nonviral transfection platform. The electromigration combined with electroporation for DNA delivery in BCC and NIH-3T3 cells were employed to test on microchips. Electroporation introduces foreign materials into cells by applying impulses of electric field to induce multiple transient pores on the cell membrane through dielectric breakdown of the cell membrane.
On the basis of the characteristic surface plasmon of the Au particles, UV-Vis absorption was utilized to qualitatively judge the efficiency of delivery. Transmission electron microscopy images and Flow Cytometer (quantitative analysis) provided evidence of the Au/oligonucleotide nanoparticles or pEGFP-N1 before and after electroporation and electromigration function.The experiments demonstrated that electrophoretic migration followed by electroporation significantly enhanced the transportation efficiency of the nanoparticleoligonucleotide complexes as compared with electroporation alone.
[1] L. P. Lee, S. A. Berger, D. Liepmann, L. Pruitt, High aspect ratio polymer microstructures and cantilevers for bioMEMS using low energy ion beam and photolithography, Sensors and Actuators A, 71, pp. 144-149, 1998.
[2] I. Moser, G. Jobst, G. A. Urban, Biosensor arrays for simultaneous measurement of glucose、lactate、glutamate and glutamine, Biosensors & Bioelectronics, 17, pp. 297-302, 2002.
[3] L. Lauer, S. Ingebrandt, M. Scholl, A. Offenhausser, Aligned microcontact printing of biomolecules on microelectronic device surfaces, IEEE Transaction on Biomedical Engineering, 48, pp. 838-842, 2002.
[4] C&E News, 7, 1995.
[5] 莊萬發編著, 超微粒子理論應用, 復漢出版社, 1995.
[6] 廖建勛, 奈米材料的發展動態, 化工資訊, 12, 1998.
[7] 牟中原, 奈米材料研究發展, 科學發展月刊, 4, 2000.
[8] 李世光, 發展微機電系統與奈米技術新興科技的人才培育與發展策略, 科技政策發展報導, 11, 2001.
[9] 劉祥麟, 台灣奈米科技研究體系之簡介, 物理雙月刊, 23, pp. 599, 2001.
[10] 黃德歡編著, 改變世界的奈米技術, 瀛舟出版社, 7, 2002.
[11] http://www.waycross.edu/faculty/gcook/anatomy/cell.htm 144
[12] J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: A review, Bioelectrochemistry and Bioenergetics, 41, pp. 135-160, 1996.
[13] T. Kotnik and D. Miklavcic, Analytical description of transmembrane voltage induced by electric fields on spheroidal cells, Biophys. J., 79, pp. 670-675, 2000.
[14] E. Neumann and S. Kakorin, Biophys, Digression on Membrane Electroporation for Drug and Gene Delivery, Chem., 85, pp. 249-253, 2002.
[15] http://www.cropsci.uiuc.edu/classes/cpsc121/images/Biotech.htm
[16] G.A. Hofmann and G.A. Evans, Electronic genetic-physical and biological aspects of cellular electromanipulation, IEEE Engineering in Medicine and Biology Magazine, 12, pp. 6-25, 1986.
[17] C.P. Jen, Y.H. Chen, C.S. Fan, C.S. Yeh, Y.C. Lin, D.B. Shieh, C.L. Wu, D.H. Chen, C.H. Chou, A Nonviral Transfection Approach in Vitro: The Design of Au Nanoparticle Vector Joint with MEMS, Langmuir, 20, pp. 1369-1374, 2004.
[18] D. J. Campbell, K. J. Beckman, C. E. Calderon, P. W. Doolan, R. H. Moore, A. B. Ellis and G. C. Lisensky, Replication and compression of bulk surface structures with polydimethylsiloxane elastomer, Journal of Chemical Education, 76, pp. 537-542, 1999.
[19] C. L. Colyer, S. D. Mangru, D. J. Harrison, Microchip-based capillary electrophoresis of human serum proteins, Journal of Chromatography A, 781, pp. 271-276, 1997.
[20] A. T. Woolley, K. Q. Lao, A. N. Glazer, R. A. Mathies, Capillary electrophoresis chips with integrated electrochemical detection, Analytical Chemistry, 70, pp. 684-688, 1998.
[21] S. F. Y. Li, Capillary electrophoresis: principles, practice and applications, Elsevier, 1993.
[22] http://www.intel.com
[23] 魏正舒、宋金丹編著, 醫學細胞生物學, 合記圖書出版社, pp. 31-34, 1998.
[24] P. T. Sharpe, Methods of cell separation, Elsevier, New York, pp. 23-26, 1988.
[25] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, Preparation and characterisation of Au colloid monolayers, Anal. Chem., 67, pp. 735-741, 1995.
[26] M. T. Reetz, W. Helbig, Size-selective Synthesis of Nanostructured Transition Metal Clusters, J. Am. Chem. Soc., 116, pp. 401-406, 1994.
[27] M. T. Reetz, W. Helbig and S. A. Quaiser, Electrochemical Preparation of Nanostructured Bimetallic Clusters, Chem. Mater., 7, pp. 227-235, 1995.
[28] M. T. Reetz and S. A. Quaiser, A New Method for the Preparation of Nanostructured Metal Clusters, Angew. Chem. Int. Ed. Engl., 34, pp. 240-246, 1995.
[29] S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai and C. R. C. Wang, The Shape Transition of Gold Nanorods, Langmuir, 15, pp. 701-707, 1999.
[30] J. Belloni, M. Mastafavi, S. Remita, J. L. Marignier and M. O. Delcourt, Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids, New J. Chem., pp. 1257-1260, 1998.
[31] Henglein, Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition, J. Phys. Chem., 97, pp. 5457-5461, 1993.
[32] Cointet, M. Mostafavi, J. Khatouri and J. Belloni, Development Kinetics of Bimetal Clusters in Solution, J. Phys. Chem., 101, pp. 3512-3519, 1997.
[33] M. Treguer, C. Cointet, H. Remita, J. Khatouri, M. Mostafavi, J. Amblard, J. Belloni and R. Keyzer, Dose rate on radiolytic synthesis of gold-silver bimetallic clusters in solution, J. Phys. Chem., 102, pp. 4310-4316, 1998.
[34] H. Remita, J. Khatouri, M. Treguer, J. Amblard and J. Belloni, Phys. D, Silver-palladium alloyed clusters synthesized by radiolysis, Atoms, Molecules, Clusters, 40, pp. 127-132, 1997.
[35] T. Yonezawa, T. Sato, S. Kurada and K. Kuge, Photochemical Formation of Colloidal Silver: Peptizing Action of Acetone Ketyl Radical, J. Chem. Soc. Faraday Trans., 87, pp. 1905-1910, 1991.
[36] M. Y. Han and C. H. Quek, Photochemical synthesis in formamide and room-temperature Coulomb staircase behavior of size-controlled cold nanoparticles, Langmuir, 16, pp. 362-371, 2000.
[37] K. Okitsu, H. Bandow, Y. Maeda and Y. Nagata, Sonochemical Preparation of Ultrafine Palladium Particles, Chem. Mater., 8, pp. 315-318, 1996.
[38] Y. Mizukoshi, K. Okitsu, Y. Maeda, T, A. Yamamoto, R. Oshima and Y. Nagata, Sonochemical Preparation of Bimetallic Nanoparticles Gold/Palladium in Aqueous Solution, J. Phys. Chem. B, 101, pp. 7033-7039, 1997.
[39] S. Link, Z. L. Wang and M. A. El-Sayed, Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B, 103, pp. 3529-3532, 1999.
[40] N. Toshima, M. Harada, y. Yamazaki and K. asakura, Catalytic Activity and Structural Analysis of Polymer-Protected Au-Pd Bimetallic Clusters Prepared by the Simultaneous Reduction of HAuCl4 and PdCl2, J. Phys. Chem., 96, pp. 9927-9932, 1992.
[41] N. Toshima, K. Kushihashi, T. Yonezawa and H. Hirai, Colloidal Dispersions of Palladium-Platinum Bimetallic Clusters Protected by Polymers, Chem. Lett., pp. 1769-1773, 1989.
[42] Sangregorio, M. Galeotti, U. Bardi and P. Baglioni, Synthesis of Cu3Au nanocluster alloy in reverse micelles, Langmuir, 12, pp. 5800-5805, 1996.
[43] K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 67, pp. 735-741, 1995.
[44] G. Mie, Ann, A contribution to the optics of turbid media special colloidal metal solutions, Phys., 25, pp. 377-382, 1908.
[45] U. Kreibig and C.V.Z. Fragstein, The Limitation of Electron Mean Free Path in Small Silver Particles, Phys., 224, pp. 307-310, 1969.
[46] K. Selby, M. Vollmer, J. Masui, V. Kersin, W. De Heer and W. Knight, Surface plasma resonances in free metal clusters, Phys. Rev. B., 40, pp. 5417-5423, 1989.
[47] N. W. Aschcroft and N. D. Mermin edit, Solid State Physics, Holt, Rinehart and Winston, Philadelphia, 1976.
[48] R. L. David, CRC Handbook of Chemistry and Physics, 74th edition, pp. 12-109, 1993-1994.
[49] Lisiecki, F. Billoudet and M. P. Pileni, Control of the shape and the size of copper metallic particles, J. Phys. Chem., 100, pp. 4160-4165, 1996.
[50] S. S. Chang, C. W. Shih, C. W. Chen, W. C. Lai and C. R. C. Wang, The Shape Transition of Gold Nanorods, Langmuir, 15, pp. 701-706, 1999.
[51] S. S. Chang and C. R. C. Wang, “金屬奈米粒子的吸收光譜”, Chemistry, 56, pp. 209-310, 1998.
[52] J. J. Storhoff, R. Elghanian, C. A. Mirkin and R. L. Letsinger, Sequence-DependentStability of DNA-Modified Gold Nanoparticles, Langmuir, 18, pp. 6666-6673, 2002.
[53] 羅錦興編著, 田口品質工程指引, 中國生產力中心, 1999.
[54] 李輝煌編著, 田口方法, 高立圖書, 2000.
[55] 劉克琪編著, 實驗設計與田口式品質工程, 華泰文化圖書, 2000.
[56] 田口玄一編著, 田口統計解析法, 五南圖書, 2003.