| 研究生: |
達路可 Steven, Dolok |
|---|---|
| 論文名稱: |
含膽固醇基單體-環糊精包容錯合物之製備及特性探討 Fabrication and Characterization of Inclusion Complex of Cholesteryl-trans-4-(11-acryloxy undecaloxy)-cinnamate with β-Cyclodextrins |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 外文關鍵詞: | supramolecule, self-assembly, inclusion complex, photoisomerization |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備一新穎性單體含光敏性(cinnamoyl group)基團之膽固醇衍生物,藉由二次作用力可與β-環糊精形成主客複體。此主客複體以1H-NMR及FT-IR來鑑定。經1H-NMR的分析顯示,平均有兩到三個環糊精可與一個含光學活性之單體形成主客複體。在TEM及SEM的分析結果顯示,此自組裝之主客複體可誘導出針狀結構;由POM分析顯示此針狀結構具有複折射性,可知自組裝之主客複體具有高次序性的排列。主客複體在不同溶劑下可自組裝形成不同的構形。例如: 主客複體在DMSO溶劑下,經波長254 nm的UV光照射後,會誘導光敏性基團發生不可逆光異構化,使得主客複體由原本的棒狀轉變成花椰菜的構形。因E-Z異構化會造成分子形狀和極性改變造成主客複體自組裝構形的變化。將單體形成主之客複體利用光起劑過氧化苯經照光聚合後,此主客複體聚合物在DMSO溶劑中可形成長條纖維狀的構形。經波長254 nm的UV光照射後,由於光敏性基團發生光異構化,使得側鏈基團極性改變,主客複體聚合物構形由纖維狀轉變成多數聚集的現象。
A new chiral monomer containing cinnamoyl group end-capped with a cholesteryl group and threaded with β-cyclodextrin was synthesized. The formation of inclusion complexes were confirmed by using FTIR and 1H-NMR. From the result of 1H-NMR it shows that two or three cyclodextrin molecules were threaded onto the synthesized chiral monomer, leading to the formation of a needle-like construction of self-assembled inclusion complexes. The self-assembled inclusion complex was found to aggregate in different solvent to form different structure. The highly ordered self-assembled inclusion complex was identified using POM, SEM, and TEM. UV irradiation of self-assembled inclusion complex in DMSO caused an irreversible change in the structure from rod-like to broccoli-like. The result is ascribed to the irreversible E-Z photoisomerization of cinnamoyl segment. Theoretically, photo induced E-Z isomerization causes variations of both molecular shape and polarity leading to the change of self-assembled construction in various solvent. The monomeric self-assembled inclusion complex was further polymerized using benzoyl peroxide as a photoinitiator. UV induced polymerization of self-assembled inclusion complex was found to form fibrous structure in DMSO. Similar to UV-induced isomerization, after UV-polymerization, poly ICs aggregated together in DMSO due to the variation of side chain polarity.
1. J. M. Lehn, Supramolecular Chemistry.Wiley-VCH. Weinheim, Germany (1995).
2. J. W. Steed, J. L. Atwood, Supramolecular Chemistry. John Wiley & Sons, Ltd. Chichester, UK (2000).
3. J. W. Steed, D. R.Turner, K. J. Wallace, Core Concept in Supramolecular Chemistry and Nanochemistry. John Wiley & Sons, Ltd. Chichester, UK (2007).
4. T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev, 105, 1401-1443 (2005).
5. G. M. Whitesides, B. Grzyboski, Science, 295, 2418-2421(2002).
6. R. Kawabata, R. Katoono. M. Yamaguchi, N. Yui, Macromolecules, 40, 1011-1017 (2007).
7. O. Safarowsky, M. Nieger, R. Fröhlich, F. Vögtle, Angew. Chem. Int, 39, 1616-1618 (2000).
8. G. M. Whitesides. M. Boncheva, Proc. Natl. Acad. Sci, 99, 4769-4774 (2002).
9. G. Wenz, B. H. Han, A. Muller, Chem. Rev, 106, 782-817 (2006).
10. R. Eelkema, K. Maeda, B. Odell, H. L. Anderson, J. Am. Chem. Soc, 129, 12384-12385 (2007).
11. F. Aricó, J. D. Badjic, S. J. Cantrill, A. H. Flood, K. C.-F. Leung, Y. Liu, J. F. Stoddart, Topics in Current Chemistry, 249, 203-259 (2005).
12. V. Aucagne, J. Berna, J. D. Crowley, S. M Goldup, K. D Hänni, D. A Leigh, P. J Lusby, V. E Ronaldson, A. M. Z Slawin, A. Viterisi, D.B Walker, J. Am. Chem. Soc, 129: 11950-11963 (2007).
13. C. A Schalley, K. Beizai, F. Vögtle, Acc. Chem. Res, 34, 465-476 (2001).
14. M. C Jiménez, C. Dietrich-Buchecker, J. P Sauvage, Angew. Chem. Int, 39, 3284-3287 (2000).
15. M. Andersson, et.al , J. Am. Chem. Soc, 124, 4347-4362 (2002).
16. P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte, Nature, 424, 915-918 (2003).
17. Y. L. Zhao, W.R Dichtel, A. Trabolsi, S. Saha, I. Aprahamian, J.F. Stoddart, J. Am. Chem. Soc, 130, 11294-11295 (2008).
18. S. A. Nepogodiev, J. F. Stoddart, Chem. Rev, 98, 1959-1976 (1998).
19. M. van den Boogaard, Cyclodextrin-containing Supramolecular Structures-From pseudo-polyrotaxanes towards molecular tubes, insulated molecular wires and topological networks. Ph.D, University of Groningen (2003).
20. H. Ritter, M. Tabatabai, Prog. Polym. Sci, 27, 1713-1720. (2002).
21. C. J. Easton, S. F. Lincoln, Modified cyclodextrins : scaffolds and templates for supramolecular chemistry. Imperial College Press, London (1999).
22. S. N. Aski, J. Kowalewski, Magn Reson Chem, 46, 261-267 (2008).
23. J. Piera, J. E. Bäckvall, Angew. Chem. Int, 47, 3506-3523 (2008).
24. Y. M. Zhang, Y. Chen, Y. Yang, P. Y. Liu, Chem. Eur. J, 15, 11333-11334 (2009).
25. R. Patel, D. Bhimani, J. Inclusion Phenom.Macrocycl, Chem. 60, 241-251 (2008).
26. D. R. Hoffman, P. P. Anderson, C. M. Schubert, Bioresour. Technol, 101, 2672-2677 (2010).
27. M. E. Skold, G. D. Thyne, J. W. Drexler, J. Contam. Hydrol, 93, 203-215 (2007).
28. S. Tavornvipas, S. Tajiri, F. Hirayama, H. Arima, K. Uekama, Pharm. Res, 21, 2369-2376 (2004).
29. A. Barzegar, A. A. Moosavi-Movahedi, S. Rezaei-Zarchi, Biotechnol Appl Biochem, 49, 203-211 (2008).
30. B. M. Goodson, J. Magn. Reson, 155, 157-216 (2002).
31. G. Castronuovo, M. Niccoli, J. Inclusion Phenom Macrocycl. Chem, 53, 69-76 (2005).
32. T. Kida, Y. Fujino, K. Miyawaki, E. Kato, M. Akashi, Org. Lett, 11, 5282-5285 (2009).
33. S. Chelli, M. Majdoub, S. Aeiyach, M. Jouini, J Polym Sci Part A: Polym Chem, 47,4391-4399 (2009).
34. J. H. Liu, Y. H. Chiu, T. H. Chiu, Macromolecules, 42, 3715-3720 (2009).
35. C. Lucas-Abellan, J. A Gabaldn-Hernndez, J. Penalva, M. I. Fortea, E. Nez-Delicad, J. Agric. Food Chem, 56. 8081-8085 (2008).
36. I. X. García-Zubiri, G. González-Gaitano, M. Sánchez, J. Incl. Phenom. Macrocycl. Chem, 49.291-295 (2004).
37. T. Aree, B. Schulz, G. Reck, J. Incl. Phenom. Macrocycl. Chem, 47. 39-45 (2003).
38. A. M. L. Denadaia, I. S. Lulaa, R. D. Sinisterra, Int. J. Pharm, 353. 160-166 (2007).
39. J. A. Corte, K.R. Stauffer, U.S. Patent. 5560950(1996).
40. N. Prasad, D. Strauss, G. Reichart, European Patent . 1084625 (1999).
41. M. Arkas, R. Allabashi, D. Tsiourvas, E. M. Mattausch, R. Perfler, Environ. Sci. Technol, 40. 2771-2777 (2006).
42. F. van de Manakker, M. van der Pot, T. Vermonden, C. F. van Nostrum, W. E. Hennink, Macromolecules., 41, 1766-1773 (2008).
43. H. Goto, Y. Furusho, E. Yashima, J. Am. Chem. Soc, 129, 109-112 ( 2007).
44. (a). . (b). A. Harada, M. Okada, Y. Kawaguchi, M. Kamachi, Polym. Adv. Technol, 10, 3-12 (1999).
45. M. Jiang, J. Zou, B. Guan, Macromolecules, 42, 7465-7473 (2009).
46. Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou, Macromolecules, 38, 5838-5840 (2005).
47. A. R. Hedges, Chem. Rev, 98, 2035-2044 (1998).
48. J. H. Liu, H. J. Hung, A. Harada, Langmuir, 24, 7442-7449 (2008).
49. K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc, 128, 7390-7398 (2006).
50. H. Fan, X. Zhu, L. Gao, Z. Li, J. Huang, J. Phys. Chem. B, 112,10165-10170 (2008).
51. S. H. Kang, K. S. Jang, P. Theato, R. Zentel, Macromolecules, 40, 8349-8354 (2007).