簡易檢索 / 詳目顯示

研究生: 達路可
Steven, Dolok
論文名稱: 含膽固醇基單體-環糊精包容錯合物之製備及特性探討
Fabrication and Characterization of Inclusion Complex of Cholesteryl-trans-4-(11-acryloxy undecaloxy)-cinnamate with β-Cyclodextrins
指導教授: 劉瑞祥
Liu, Jui-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 66
外文關鍵詞: supramolecule, self-assembly, inclusion complex, photoisomerization
相關次數: 點閱:51下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製備一新穎性單體含光敏性(cinnamoyl group)基團之膽固醇衍生物,藉由二次作用力可與β-環糊精形成主客複體。此主客複體以1H-NMR及FT-IR來鑑定。經1H-NMR的分析顯示,平均有兩到三個環糊精可與一個含光學活性之單體形成主客複體。在TEM及SEM的分析結果顯示,此自組裝之主客複體可誘導出針狀結構;由POM分析顯示此針狀結構具有複折射性,可知自組裝之主客複體具有高次序性的排列。主客複體在不同溶劑下可自組裝形成不同的構形。例如: 主客複體在DMSO溶劑下,經波長254 nm的UV光照射後,會誘導光敏性基團發生不可逆光異構化,使得主客複體由原本的棒狀轉變成花椰菜的構形。因E-Z異構化會造成分子形狀和極性改變造成主客複體自組裝構形的變化。將單體形成主之客複體利用光起劑過氧化苯經照光聚合後,此主客複體聚合物在DMSO溶劑中可形成長條纖維狀的構形。經波長254 nm的UV光照射後,由於光敏性基團發生光異構化,使得側鏈基團極性改變,主客複體聚合物構形由纖維狀轉變成多數聚集的現象。

    A new chiral monomer containing cinnamoyl group end-capped with a cholesteryl group and threaded with β-cyclodextrin was synthesized. The formation of inclusion complexes were confirmed by using FTIR and 1H-NMR. From the result of 1H-NMR it shows that two or three cyclodextrin molecules were threaded onto the synthesized chiral monomer, leading to the formation of a needle-like construction of self-assembled inclusion complexes. The self-assembled inclusion complex was found to aggregate in different solvent to form different structure. The highly ordered self-assembled inclusion complex was identified using POM, SEM, and TEM. UV irradiation of self-assembled inclusion complex in DMSO caused an irreversible change in the structure from rod-like to broccoli-like. The result is ascribed to the irreversible E-Z photoisomerization of cinnamoyl segment. Theoretically, photo induced E-Z isomerization causes variations of both molecular shape and polarity leading to the change of self-assembled construction in various solvent. The monomeric self-assembled inclusion complex was further polymerized using benzoyl peroxide as a photoinitiator. UV induced polymerization of self-assembled inclusion complex was found to form fibrous structure in DMSO. Similar to UV-induced isomerization, after UV-polymerization, poly ICs aggregated together in DMSO due to the variation of side chain polarity.

    Abstract I 中文摘要 II Contents III List of Tables VI List of Figures VII List of Schemes XI Chapter 1 Introduction 1 1.1. Introduction 1 1.2. Research Motivation 4 Chapter 2 General Introduction and Theoretical Background 5 2.1. Self-Assembly 5 2.1.1 Definition of Self-Assembly 5 2.1.2 Present and Future Applications 8 2.1.3 Rotaxane and pseudo-rotaxane 9 2.2. Cyclodextrin 14 2.2.1 The structure and properties of cyclodextrins 14 2.2.2 Applications of cyclodextrin 17 2.3. Inclusion Complex of Cyclodextrins 20 2.3.1 Synthesis of Cyclodextrins Inclusion Complexes 20 2.3.2 Application of Cyclodextrins Inclusion Complexes 22 2.4. Cyclodextrin Supramolecular Structure 24 Chapter 3 Experiment Section 27 3.1. Materials 27 3.2. Measurements 28 3.3. Synthesis of Chiral Monomers 30 3.4. Synthesis Chiral Monomers (CAUC) Threaded with β-Cyclodextrin (β-CD -CAHB inclusion complex) 32 3.5. Polymerization of β-CD-CAUC Inclusion Complex 33 3.6. Removal of β-cyclodextrin from Inclusion Complex Polymer 33 Chapter 4 Results and Discussion 34 4.1. Synthesis of Monomer 34 4.2. Preparation of β-Cyclodextrin-CAUC Inclusion Complexes 35 4.3. Characterization of β-CD-CAUC Inclusion Complexes 35 4.3.1 Solvent Effect 44 4.3.2 UV Irradiation Effect 50 4.4. Polymerization of β-CD-CAUC Inclusion Complexes 56 4.5. Removal of β-cyclodextrin from the inclusion complex polymer 59 Chapter 5 Conclusions 61 References 62

    1. J. M. Lehn, Supramolecular Chemistry.Wiley-VCH. Weinheim, Germany (1995).
    2. J. W. Steed, J. L. Atwood, Supramolecular Chemistry. John Wiley & Sons, Ltd. Chichester, UK (2000).
    3. J. W. Steed, D. R.Turner, K. J. Wallace, Core Concept in Supramolecular Chemistry and Nanochemistry. John Wiley & Sons, Ltd. Chichester, UK (2007).
    4. T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev, 105, 1401-1443 (2005).
    5. G. M. Whitesides, B. Grzyboski, Science, 295, 2418-2421(2002).
    6. R. Kawabata, R. Katoono. M. Yamaguchi, N. Yui, Macromolecules, 40, 1011-1017 (2007).
    7. O. Safarowsky, M. Nieger, R. Fröhlich, F. Vögtle, Angew. Chem. Int, 39, 1616-1618 (2000).
    8. G. M. Whitesides. M. Boncheva, Proc. Natl. Acad. Sci, 99, 4769-4774 (2002).
    9. G. Wenz, B. H. Han, A. Muller, Chem. Rev, 106, 782-817 (2006).
    10. R. Eelkema, K. Maeda, B. Odell, H. L. Anderson, J. Am. Chem. Soc, 129, 12384-12385 (2007).
    11. F. Aricó, J. D. Badjic, S. J. Cantrill, A. H. Flood, K. C.-F. Leung, Y. Liu, J. F. Stoddart, Topics in Current Chemistry, 249, 203-259 (2005).
    12. V. Aucagne, J. Berna, J. D. Crowley, S. M Goldup, K. D Hänni, D. A Leigh, P. J Lusby, V. E Ronaldson, A. M. Z Slawin, A. Viterisi, D.B Walker, J. Am. Chem. Soc, 129: 11950-11963 (2007).
    13. C. A Schalley, K. Beizai, F. Vögtle, Acc. Chem. Res, 34, 465-476 (2001).
    14. M. C Jiménez, C. Dietrich-Buchecker, J. P Sauvage, Angew. Chem. Int, 39, 3284-3287 (2000).
    15. M. Andersson, et.al , J. Am. Chem. Soc, 124, 4347-4362 (2002).
    16. P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte, Nature, 424, 915-918 (2003).
    17. Y. L. Zhao, W.R Dichtel, A. Trabolsi, S. Saha, I. Aprahamian, J.F. Stoddart, J. Am. Chem. Soc, 130, 11294-11295 (2008).
    18. S. A. Nepogodiev, J. F. Stoddart, Chem. Rev, 98, 1959-1976 (1998).
    19. M. van den Boogaard, Cyclodextrin-containing Supramolecular Structures-From pseudo-polyrotaxanes towards molecular tubes, insulated molecular wires and topological networks. Ph.D, University of Groningen (2003).
    20. H. Ritter, M. Tabatabai, Prog. Polym. Sci, 27, 1713-1720. (2002).
    21. C. J. Easton, S. F. Lincoln, Modified cyclodextrins : scaffolds and templates for supramolecular chemistry. Imperial College Press, London (1999).
    22. S. N. Aski, J. Kowalewski, Magn Reson Chem, 46, 261-267 (2008).
    23. J. Piera, J. E. Bäckvall, Angew. Chem. Int, 47, 3506-3523 (2008).
    24. Y. M. Zhang, Y. Chen, Y. Yang, P. Y. Liu, Chem. Eur. J, 15, 11333-11334 (2009).
    25. R. Patel, D. Bhimani, J. Inclusion Phenom.Macrocycl, Chem. 60, 241-251 (2008).
    26. D. R. Hoffman, P. P. Anderson, C. M. Schubert, Bioresour. Technol, 101, 2672-2677 (2010).
    27. M. E. Skold, G. D. Thyne, J. W. Drexler, J. Contam. Hydrol, 93, 203-215 (2007).
    28. S. Tavornvipas, S. Tajiri, F. Hirayama, H. Arima, K. Uekama, Pharm. Res, 21, 2369-2376 (2004).
    29. A. Barzegar, A. A. Moosavi-Movahedi, S. Rezaei-Zarchi, Biotechnol Appl Biochem, 49, 203-211 (2008).
    30. B. M. Goodson, J. Magn. Reson, 155, 157-216 (2002).
    31. G. Castronuovo, M. Niccoli, J. Inclusion Phenom Macrocycl. Chem, 53, 69-76 (2005).
    32. T. Kida, Y. Fujino, K. Miyawaki, E. Kato, M. Akashi, Org. Lett, 11, 5282-5285 (2009).
    33. S. Chelli, M. Majdoub, S. Aeiyach, M. Jouini, J Polym Sci Part A: Polym Chem, 47,4391-4399 (2009).
    34. J. H. Liu, Y. H. Chiu, T. H. Chiu, Macromolecules, 42, 3715-3720 (2009).
    35. C. Lucas-Abellan, J. A Gabaldn-Hernndez, J. Penalva, M. I. Fortea, E. Nez-Delicad, J. Agric. Food Chem, 56. 8081-8085 (2008).
    36. I. X. García-Zubiri, G. González-Gaitano, M. Sánchez, J. Incl. Phenom. Macrocycl. Chem, 49.291-295 (2004).
    37. T. Aree, B. Schulz, G. Reck, J. Incl. Phenom. Macrocycl. Chem, 47. 39-45 (2003).
    38. A. M. L. Denadaia, I. S. Lulaa, R. D. Sinisterra, Int. J. Pharm, 353. 160-166 (2007).
    39. J. A. Corte, K.R. Stauffer, U.S. Patent. 5560950(1996).
    40. N. Prasad, D. Strauss, G. Reichart, European Patent . 1084625 (1999).
    41. M. Arkas, R. Allabashi, D. Tsiourvas, E. M. Mattausch, R. Perfler, Environ. Sci. Technol, 40. 2771-2777 (2006).
    42. F. van de Manakker, M. van der Pot, T. Vermonden, C. F. van Nostrum, W. E. Hennink, Macromolecules., 41, 1766-1773 (2008).
    43. H. Goto, Y. Furusho, E. Yashima, J. Am. Chem. Soc, 129, 109-112 ( 2007).
    44. (a). . (b). A. Harada, M. Okada, Y. Kawaguchi, M. Kamachi, Polym. Adv. Technol, 10, 3-12 (1999).
    45. M. Jiang, J. Zou, B. Guan, Macromolecules, 42, 7465-7473 (2009).
    46. Y. Liu, Y. W. Yang, Y. Chen, H. X. Zou, Macromolecules, 38, 5838-5840 (2005).
    47. A. R. Hedges, Chem. Rev, 98, 2035-2044 (1998).
    48. J. H. Liu, H. J. Hung, A. Harada, Langmuir, 24, 7442-7449 (2008).
    49. K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc, 128, 7390-7398 (2006).
    50. H. Fan, X. Zhu, L. Gao, Z. Li, J. Huang, J. Phys. Chem. B, 112,10165-10170 (2008).
    51. S. H. Kang, K. S. Jang, P. Theato, R. Zentel, Macromolecules, 40, 8349-8354 (2007).

    下載圖示 校內:2011-07-23公開
    校外:2011-07-23公開
    QR CODE